在学会了shared
variables are currently not guarded by memory barriers的困难之后,我现在遇到了另一个问题。要么我做错了,要么dmd中的现有编译器优化可以通过重新排序shared
变量的读取来破坏多线程代码。
例如,当我使用dmd -O
(完全优化)编译可执行文件时,编译器会愉快地优化此代码中的局部变量o
(其中cas
是比较 - 来自core.atomic
)的交换函数
shared uint cnt;
void atomicInc ( ) { uint o; do { o = cnt; } while ( !cas( &cnt, o, o + 1 ) );}
这样的事情(参见下面的拆卸):
shared uint cnt;
void atomicInc ( ) { while ( !cas( &cnt, cnt, cnt + 1 ) ) { } }
在“优化”代码中,cnt
从内存中读取两次,从而冒着另一个线程在其间修改cnt
的风险。优化基本上破坏了比较和交换算法。
这是一个错误,还是有正确的方法来达到预期的效果?到目前为止,我发现的唯一解决方法是使用汇编程序实现代码。
完整的测试代码和其他详细信息
为了完整起见,这里有一个完整的测试代码,可以显示这两个问题(没有内存障碍和优化问题)。它在dmd 2.049和dmd 2.050的三台不同的Windows机器上产生以下输出(假设Dekker的算法没有死锁,可能会发生死锁):
dmd -O -run optbug.d
CAS : failed
Dekker: failed
atomicInc
中的循环被编译为完全优化:
; cnt is stored at 447C10h
; while ( !cas( &cnt, o, o + 1 ) ) o = cnt;
; 1) prepare call cas( &cnt, o, o + 1 ): &cnt and o go to stack, o+1 to eax
402027: mov ecx,447C10h ; ecx = &cnt
40202C: mov eax,[447C10h] ; eax = o1 = cnt
402031: inc eax ; eax = o1 + 1 (third parameter)
402032: push ecx ; push &cnt (first parameter)
; next instruction pushes current value of cnt onto stack
; as second parameter o instead of re-using o1
402033: push [447C10h]
402039: call 4020BC ; 2) call cas
40203E: xor al,1 ; 3) test success
402040: jne 402027 ; no success try again
; end of main loop
这是测试代码:
import core.atomic;
import core.thread;
import std.stdio;
enum loops = 0xFFFF;
shared uint cnt;
/* *****************************************************************************
Implement atomicOp!("+=")(cnt, 1U); with CAS. The code below doesn't work with
the "-O" compiler flag because cnt is read twice while calling cas and another
thread can modify cnt in between.
*/
enum threads = 8;
void atomicInc ( ) { uint o; do { o = cnt; } while ( !cas( &cnt, o, o + 1 ) );}
void threadFunc ( ) { foreach (i; 0..loops) atomicInc; }
void testCas ( ) {
cnt = 0;
auto tgCas = new ThreadGroup;
foreach (i; 0..threads) tgCas.create(&threadFunc);
tgCas.joinAll;
writeln( "CAS : ", cnt == loops * threads ? "passed" : "failed" );
}
/* *****************************************************************************
Dekker's algorithm. Fails on ia32 (other than atom) because ia32 can re-order
read before write. Most likely fails on many other architectures.
*/
shared bool flag1 = false;
shared bool flag2 = false;
shared bool turn2 = false; // avoids starvation by executing 1 and 2 in turns
void dekkerInc ( ) {
flag1 = true;
while ( flag2 ) if ( turn2 ) {
flag1 = false; while ( turn2 ) { /* wait until my turn */ }
flag1 = true;
}
cnt++; // shouldn't work without a cast
turn2 = true; flag1 = false;
}
void dekkerDec ( ) {
flag2 = true;
while ( flag1 ) if ( !turn2 ) {
flag2 = false; while ( !turn2 ) { /* wait until my turn */ }
flag2 = true;
}
cnt--; // shouldn't work without a cast
turn2 = false; flag2 = false;
}
void threadDekkerInc ( ) { foreach (i; 0..loops) dekkerInc; }
void threadDekkerDec ( ) { foreach (i; 0..loops) dekkerDec; }
void testDekker ( ) {
cnt = 0;
auto tgDekker = new ThreadGroup;
tgDekker.create( &threadDekkerInc );
tgDekker.create( &threadDekkerDec );
tgDekker.joinAll;
writeln( "Dekker: ", cnt == 0 ? "passed" : "failed" );
}
/* ************************************************************************** */
void main() {
testCas;
testDekker;
}
答案 0 :(得分:4)
虽然问题似乎仍然存在,但core.atomic
现在公开atomicLoad
,这使得相对简单的解决方法成为可能。要使cas
示例正常工作,只需以原子方式加载cnt
:
void atomicInc ( ) {
uint o;
do {
o = atomicLoad(cnt);
} while ( !cas( &cnt, o, o + 1 ) );
}
同样,要使Dekker的算法有效:
// ...
while ( atomicLoad(flag2) ) if ( turn2 ) {
// ...
while ( atomicLoad(flag1) ) if ( !turn2 ) {
// ...
对于ia32以外的体系结构(忽略字符串操作和SSE),也可以重新排序
需要额外的内存障碍。
答案 1 :(得分:3)
是的,在汇编程序中编码。如果你跳过使用cas()函数并在程序集中编写整个atomicInt函数,它只会是几行代码。在你这样做之前,你可能会反对编译器的优化。
最重要的是,您可以使用x86 LOCK INC指令代替CAS,并且您应该能够将功能简化为一行或两行程序集。