我正在学习tf.contrib.opt.ScipyOptimizerInterface
并正在制作一个限制的演示,每个重量都是非负的。
# -*- coding: utf-8 -*-
import tensorflow as tf
vector = tf.constant([.021,.046,.013], name='vector')
wt = tf.Variable([1./3,1./3,1./3], 'wt')
loss = -tf.reduce_sum(tf.multiply(vector,wt,'loss'))
equalities = [tf.reduce_sum(wt) - 1.]
inequalities = [wt[0],wt[1],wt[2]]
optimizer = tf.contrib.opt.ScipyOptimizerInterface(loss, var_list=[wt], equalities=equalities, inequalities=inequalities, method='SLSQP')
with tf.Session() as session:
session.run(tf.global_variables_initializer())
optimizer.minimize(session)
equalities
:可选的等式约束标量张量列表 被保持等于零。inequalities
:不平等的可选列表 约束标量张量保持非负。
如何将inequalities = [wt[0],wt[1],wt[2]]
更改为inequalities = [wt[i] for i in range(tf.size(weight))]
?
答案 0 :(得分:1)
您可以使用以下方式进行设置:
inequalities = [wt[i] for i in range(wt.get_shape()[0])]