制作train_step.run()时出现Tensorflow错误

时间:2017-01-12 16:42:49

标签: python tensorflow

我一整天都遇到过这个问题,我无法在网上找到解决方案。

我正在编码卷积神经网络,用于对某些BW图像进行分类。我首先阅读数据,准备网络架构然后运行训练部分,但是在尝试训练时我总是遇到这个错误:

tensorflow.python.framework.errors_impl.InvalidArgumentError: Expected begin[0] == 0 (got -1) and size[0] == 0 (got 1) when input.dim_size(0) == 0
     [[Node: Slice_1 = Slice[Index=DT_INT32, T=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](Shape_2, Slice_1/begin, Slice_1/size)]]

我在网上找不到任何有用的东西,我。我无法弄清楚出了什么问题。非常感谢大家,我将以下全部代码链接到您:

import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
import random

"""
N_CLASSES, number of classes of the dataset, 2 classes, one for an error and the other one if it is ok
BATH SIZE, is going to depend on the number of samples taht we have
IMAGE_HEIGHT, height of the images
IMAGE_WIDTH, width of the images
TOTAL_SIZE, total size of the image

"""
N_CLASSES = 2
BATCH_SIZE = 5
NUM_CHANNELS  = 1
IMAGE_HEIGHT = 696
IMAGE_WIDTH = 1024
TOTAL_SIZE = 1024*696

x = tf.placeholder(tf.float32, [None, None, 1])
y = tf.placeholder(tf.int32)

# Keep rate will do 0.6
keep_rate = 0.6
keep_prob = tf.placeholder(tf.float32)

""" Function for encoding the label from string to int"""
def encode_label(label):
    return int(label)

""" Function for reading a label file separeted by ,
    F.E: /home/pacocp/dataset/image1.jpg,1
"""
def read_label_file(file):
    f = open(file)
    filepaths = []
    labels = []
    for line in f:
        filepath, label = line.split(",")
        filepaths.append(filepath)
        labels.append(encode_label(label))
    return filepaths, labels

"""This function is going to load the SEM images """
def load_images(dataset_path,test_labels_file,train_labels_file):
    # reading labels and file path
    train_filepaths, train_labels = read_label_file(dataset_path + train_labels_file)
    test_filepaths, test_labels = read_label_file(dataset_path + test_labels_file)
    """
    # transform relative path into full path
    train_filepaths = [ dataset_path + fp for fp in train_filepaths]
    test_filepaths = [ dataset_path + fp for fp in test_filepaths]
    """

    # for this example we will create or own test partition
    all_filepaths = train_filepaths + test_filepaths
    all_labels = train_labels + test_labels

    # convert string into tensors
    all_images = ops.convert_to_tensor(all_filepaths, dtype=dtypes.string)
    all_labels = ops.convert_to_tensor(all_labels, dtype=dtypes.int32)

    #now, we are going to create a partition vector
    test_set_size = 5
    partitions = [0] * len(all_filepaths)
    partitions[:test_set_size] = [1] * test_set_size
    random.shuffle(partitions)

    # partition our data into a test and train set according to our partition vector
    train_images, test_images = tf.dynamic_partition(all_images, partitions, 2)
    train_labels, test_labels = tf.dynamic_partition(all_labels, partitions, 2)

    # create input queues
    train_input_queue = tf.train.slice_input_producer(
                                    [train_images, train_labels],
                                    shuffle=False)
    test_input_queue = tf.train.slice_input_producer(
                                    [test_images, test_labels],
                                    shuffle=False)

    # process path and string tensor into an image and a label
    file_content = tf.read_file(train_input_queue[0])
    train_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS) #You have to change this line depending on the image format
    train_label = train_input_queue[1]

    file_content = tf.read_file(test_input_queue[0])
    test_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS)
    test_label = test_input_queue[1]


    # define tensor shape
    train_image.set_shape([IMAGE_HEIGHT,IMAGE_WIDTH,1])
    test_image.set_shape([IMAGE_HEIGHT,IMAGE_WIDTH,1])

    """ TEST FOR NOT USING BATCHES AND USING ALL THE IMAGES DIRECTLY
    print("Here")
    # collect batches of images before processing
    train_image_batch, train_label_batch = tf.train.batch(
                                    [train_image, train_label],
                                    batch_size=BATCH_SIZE
                                    #,num_threads=1
                                    )
    test_image_batch, test_label_batch = tf.train.batch(
                                    [test_image, test_label],
                                    batch_size=BATCH_SIZE
                                    #,num_threads=1
                                    )


    return {'train_image_batch':train_image_batch, 'train_label_batch':train_label_batch,
            'test_image_batch':test_image_batch, 'test_label_batch':test_label_batch}

    """

    return {'train_image_batch':train_image, 'train_label_batch':train_label,
            'test_image_batch':test_image, 'test_label_batch':test_label}

""" This is going to be used for creating the weights and the biases"""
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

def conv2d(data, weights):
    return tf.nn.conv2d(data, weights, strides=[1,1,1,1], padding='SAME') # We are not going to get the depth

def maxpool2d(data):
    """Here we are going to move two by two at a time size of the window movement of the window"""
    return tf.nn.max_pool(data, ksize=[1,2,2,1],strides=[1,2,2,1], padding = 'SAME')

def convolutional_neural_network(data):

    """Here we are going to create the weights and biases variables for generating our neural network"""

    print("Creating first layer")
    w_conv1 = weight_variable([15, 15, 1, 32])
    b_conv1 = bias_variable([32])


    x_image = tf.reshape(data, shape=[-1, 696, 1024, 1]) #Reshape the image, second and third elements
                                                         # are height and width, an the third dimension the colors channel


    #First convolutional layer
    h_conv1 = tf.nn.relu(conv2d(x_image,w_conv1 + b_conv1))
    h_pool1 = maxpool2d(h_conv1)

    print("Creating second layer")
    w_conv2 = weight_variable([15, 15, 32, 64])
    b_conv2 = bias_variable([64])

    #Second convolutional layer
    h_conv2 = tf.nn.relu(conv2d(h_pool1,w_conv2 + b_conv2))
    h_pool2 = maxpool2d(h_conv2)

    print("Craeating fully-conected layer")
    w_fc1 = weight_variable([1024, 1024])
    b_fc1 = bias_variable([1024])

    #Final
    h_pool2_flat = tf.reshape(h_pool2,[-1,1024])

    fc = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1 )+ b_fc1)


    """The idea of dropout is for help us in a
    bigger neural network, dropout is going to help fight
    local minimuns"""

    fc_dropout = tf.nn.dropout(fc, keep_rate) #Compute dropout

    print("Creating output layer")
    w_fc2 = weight_variable([1024, N_CLASSES])
    b_fc2 = bias_variable([N_CLASSES])

    #Final layer with a softmax
    y = tf.matmul(fc_dropout, w_fc2)+ b_fc2

    print("CNN created")

    return y


'''Here is the main where we are going to train the convolutional neural network'''

#Here we read the images

dataset_path = "/media/datos/Dropbox/4ºaño/Image Analysis and Computer Vision/NanoFibers/DataSet/"
test_labels_file = "SEM_test_labels.txt"
train_labels_file = "SEM_train_labels.txt"
print("Loading the images...")
train_and_test_sets = load_images(dataset_path,test_labels_file,train_labels_file)
print("Images loaded sucessfully!")


#Now, I'm going to save some things in variables for a clearer code
train_image_batch = train_and_test_sets['train_image_batch']
train_label_batch = train_and_test_sets['train_label_batch']
test_image_batch = train_and_test_sets['test_image_batch']
test_label_batch = train_and_test_sets['test_label_batch']

"""THIS IS FOR SHOWING THE SETS, JUST FOR DEBBUGING
with tf.Session() as sess:

  # initialize the variables
  sess.run(tf.global_variables_initializer())

  # initialize the queue threads to start to shovel data
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(coord=coord)

  print("from the train set:")

  for i in range(31):
    print(sess.run(train_image_batch))

  print("from the test set:")
  for i in range(11):
    print(sess.run(test_label_batch))

  # stop our queue threads and properly close the session
  coord.request_stop()
  coord.join(threads)
  sess.close()

"""

sess = tf.Session()


#Now, I'm going to save some things in variables for a clearer code
train_image_batch = train_and_test_sets['train_image_batch']
train_label_batch = train_and_test_sets['train_label_batch']
test_image_batch = train_and_test_sets['test_image_batch']
test_label_batch = train_and_test_sets['test_label_batch']



sess = tf.InteractiveSession()


#Firstly we get the prediction
prediction = convolutional_neural_network(x)

#Cross Entropy is what we are going to try to reduce
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction, y))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(prediction,1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

#----------PROBLEM HERE
sess.run(tf.global_variables_initializer())
tf.train.start_queue_runners(sess=sess)


# Here it's where the train it's going to be made
train_images = sess.run(train_image_batch)
train_labels = sess.run(train_label_batch)
test_images = sess.run(test_image_batch)
test_labels = sess.run(test_label_batch)
with sess.as_default():
    index_for_batch = 1
    for i in range(50):
        print("generating batches")
        #batch_image = train_image_batch[index_for_batch].eval(session=sess)
        #batch_label = train_label_batch[index_for_batch].eval(session=sess)
        print("generated")
        if (i%5 == 0) and (i != 0):
            train_accuracy = accuracy.eval(feed_dict={
            x:train_images, y: train_labels, keep_prob: 1.0})
            print("step %d, training accuracy %g"%(i, train_accuracy))

        print("*********Doing training step***********")
        train_step.run(feed_dict={x: train_images, y: train_labels, keep_prob: 0.5})

        if(index_for_batch + 1 > len(train_image_batch)):
            index_for_batch = 1
        else:
            index_for_batch = index_for_batch + 1

#Here we are gong to test the accuracy of the training
print("test accuracy %g"%accuracy.eval(feed_dict={
    x: test_images, y: test_labels, keep_prob: 1.0}))

使用OPS NAMES编辑错误

Traceback (most recent call last):
  File "/usr/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1021, in _do_call
    return fn(*args)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1003, in _run_fn
    status, run_metadata)
  File "/usr/lib/python3.5/contextlib.py", line 66, in __exit__
    next(self.gen)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py", line 469, in raise_exception_on_not_ok_status
    pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Expected begin[0] == 0 (got -1) and size[0] == 0 (got 1) when input.dim_size(0) == 0
         [[Node: Slice_1 = Slice[Index=DT_INT32, T=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](Shape_2, Slice_1/begin, Slice_1/size)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "convolutional_net.py", line 295, in <module>
    train_step.run(feed_dict={x: train_images, y: train_labels, keep_prob: 0.5})
  File "/usr/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1449, in run
    _run_using_default_session(self, feed_dict, self.graph, session)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3668, in _run_using_default_session
    session.run(operation, feed_dict)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 766, in run
    run_metadata_ptr)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 964, in _run
    feed_dict_string, options, run_metadata)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1014, in _do_run
    target_list, options, run_metadata)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1034, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Expected begin[0] == 0 (got -1) and size[0] == 0 (got 1) when input.dim_size(0) == 0
         [[Node: Slice_1 = Slice[Index=DT_INT32, T=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](Shape_2, Slice_1/begin, Slice_1/size)]]

Caused by op 'Slice_1', defined at:
  File "convolutional_net.py", line 264, in <module>
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction, y))
  File "/usr/lib/python3.5/site-packages/tensorflow/python/ops/nn_ops.py", line 1443, in softmax_cross_entropy_with_logits
    labels = _flatten_outer_dims(labels)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/ops/nn_ops.py", line 1245, in _flatten_outer_dims
    array_ops.shape(logits), [math_ops.sub(rank, 1)], [1])
  File "/usr/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py", line 484, in slice
    return gen_array_ops._slice(input_, begin, size, name=name)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/ops/gen_array_ops.py", line 2868, in _slice
    name=name)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py", line 759, in apply_op
    op_def=op_def)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2240, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/usr/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1128, in __init__
    self._traceback = _extract_stack()

InvalidArgumentError (see above for traceback): Expected begin[0] == 0 (got -1) and size[0] == 0 (got 1) when input.dim_size(0) == 0
         [[Node: Slice_1 = Slice[Index=DT_INT32, T=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](Shape_2, Slice_1/begin, Slice_1/size)]]

1 个答案:

答案 0 :(得分:1)

通过阅读代码,问题源于tf.nn.softmax_cross_entropy_with_logits()的参数形状。根据文件:

  

logitslabels必须具有相同的形状[batch_size, num_classes]和相同的dtype(float16float32float64)。

您的代码调用tf.nn.softmax_cross_entropy_with_logits(prediction, y),所以让我们看一下参数的形状:

  • prediction是从convolutional_neural_network(x)返回的值,其形状为[batch_size, N_CLASSES]。 (x的占位符代表batch_sizeNone,因此它可以是动态的。)

  • y定义为y = tf.placeholder(tf.int32)。占位符没有形状信息,因此它是静态未知的(这部分解释了可怜的错误消息...有关详细信息,请参见下文)。为了找出y的实际形状,我们可以看看你如何为占位符提供信息,看起来你用一个整数列表来提供它,从输入文件解析,其中整数代表真正的标签相应的例子。

要解决此问题,您应该将tf.nn.softmax_cross_entropy_with_logits()替换为稀疏对应的tf.nn.sparse_softmax_cross_entropy_with_logits(),它可以处理您正在使用的格式的输入数据:

cross_entropy = tf.reduce_mean(
    tf.nn.sparse_softmax_cross_entropy_with_logits(prediction, y))

(另一种方法是使用tf.one_hot(y, N_CLASSES)y转换为tf.nn.softmax_cross_entropy_with_logits()的适当单热编码,但这可能效率较低,因为它必须具体化目标值的大矩阵。)

请注意,您遇到此问题的运行时错误的原因是因为y定义了# `y` is a (variable-length) vector. y = tf.placeholder(tf.int32, shape=[None]) ,没有静态形状。如果您将其定义为矢量,则在图形构建时会出现错误:

void MayaExtractCalDataPlugin::sceneLoaded( void* clientData )
{
    // Store the pointer to the current class
    MayaExtractCalDataPlugin* crntPlugin = (MayaExtractCalDataPlugin*)clientData;

    // We only enter the callback when isReadingFile() is false, as this indicates that all
    // loading is complete. otherwise we would enter a whole series of callbacks when loading a scene
    // with lots of references in.
    if( !MFileIO::isReadingFile() )
    {
        // Traverse the scene and find image planes 
        // First we need to create an iterator to go through all image planes
        MItDependencyNodes it(MFn::kImagePlane);

        //iterate through all image planes
        while(!it.isDone())
        {

            // Get the imagePlane object
            MStatus status;
            MObject object = it.thisNode(&status);

            ...
         }
    }
}