我想用Spark SQL测试基本内容。我想加载一个csv。文件,保存在我的笔记本电脑上,并在其上运行一些SQL查询。但不知何故,我无法使用sqlContext加载数据。我收到错误:
Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.
然而,我并没有使用Hive。
我正在使用Windows 10并使用Anaconda安装了python。我为hadoop 2.6安装了Spark 2.0.2 prebuild。我使用iPython Notebook作为用户界面。
我的代码如下:
file = "C:/Andra/spark-2.0.2-bin-hadoop2.6/zip.csv"
df = sqlContext\
.read \
.format("com.databricks.spark.csv")\
.option("header", "true")\
.option("inferschema", "true")\
.option("mode", "DROPMALFORMED")\
.load(file)
问题在于Spark SQL,因为我可以使用
加载相同的文件textFile=sc.textFile("C:/Andra/spark-2.0.2-bin-hadoop2.6/zip.csv")
如果我想从Spark SQL文档https://spark.apache.org/docs/latest/sql-programming-guide.html运行示例,我会收到同样的错误。
from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL basic example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()
df = spark.read.json("C:/Andra/spark-2.0.2-bin-hadoop2.6/examples/src/main/resources/people.json")
我的印象是我可以在不使用Hive的情况下使用Spark SQL,因为我使用的数据是在我的笔记本电脑上保存的。此外,上述相同的文档仅表示:
" Spark SQL的一个用途是执行SQL查询。 Spark SQL可以也用于从现有Hive安装中读取数据。有关如何配置此功能的更多信息,请参阅Hive Tables部分。"
还有使用Hive创建spark会话的示例。如果使用配置单元是强制性的,那么上面的那个就没用了。
但是,我想配置Hive以查看是否可以解决问题。文档指南(https://spark.apache.org/docs/latest/sql-programming-guide.html#hive-tables)声明
"通过放置 hive-site.xml,core-site.xml (用于安全配置),和hdfs-site来完成Hive的配置conf /."
中的.xml (用于HDFS配置)文件 但是,我找不到那些文件。所以我的问题是这些:
任何帮助表示赞赏!谢谢!
以下是完整的错误陈述:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-4-e50d7a8fb32b> in <module>()
1 file = "C:/Andra/spark-2.0.2-bin-hadoop2.6/zip.csv"
----> 2 df = sqlContext .read .format("com.databricks.spark.csv") .option("header", "true") .option("inferschema", "true") .option("mode", "DROPMALFORMED") .load(file)
C:\Andra\spark-2.0.2-bin-hadoop2.6\python\pyspark\sql\readwriter.pyc in load(self, path, format, schema, **options)
145 self.options(**options)
146 if isinstance(path, basestring):
--> 147 return self._df(self._jreader.load(path))
148 elif path is not None:
149 if type(path) != list:
C:\Andra\spark-2.0.2-bin-hadoop2.6\python\lib\py4j-0.10.3-src.zip\py4j\java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:
C:\Andra\spark-2.0.2-bin-hadoop2.6\python\pyspark\sql\utils.pyc in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
C:\Andra\spark-2.0.2-bin-hadoop2.6\python\lib\py4j-0.10.3-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling {0}{1}{2}.\n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(
Py4JJavaError: An error occurred while calling o110.load.
: java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:522)
at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:189)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:258)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:359)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:263)
at org.apache.spark.sql.hive.HiveSharedState.metadataHive$lzycompute(HiveSharedState.scala:39)
at org.apache.spark.sql.hive.HiveSharedState.metadataHive(HiveSharedState.scala:38)
at org.apache.spark.sql.hive.HiveSharedState.externalCatalog$lzycompute(HiveSharedState.scala:46)
at org.apache.spark.sql.hive.HiveSharedState.externalCatalog(HiveSharedState.scala:45)
at org.apache.spark.sql.hive.HiveSessionState.catalog$lzycompute(HiveSessionState.scala:50)
at org.apache.spark.sql.hive.HiveSessionState.catalog(HiveSessionState.scala:48)
at org.apache.spark.sql.hive.HiveSessionState$$anon$1.<init>(HiveSessionState.scala:63)
at org.apache.spark.sql.hive.HiveSessionState.analyzer$lzycompute(HiveSessionState.scala:63)
at org.apache.spark.sql.hive.HiveSessionState.analyzer(HiveSessionState.scala:62)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64)
at org.apache.spark.sql.SparkSession.baseRelationToDataFrame(SparkSession.scala:382)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:143)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:132)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1523)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:86)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:132)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:104)
at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:3005)
at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:3024)
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:503)
... 33 more
Caused by: java.lang.reflect.InvocationTargetException
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1521)
... 39 more
Caused by: java.lang.NullPointerException
at org.apache.thrift.transport.TSocket.open(TSocket.java:170)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.open(HiveMetaStoreClient.java:420)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:236)
at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.<init>(SessionHiveMetaStoreClient.java:74)
... 44 more
答案 0 :(得分:7)
我最近遇到了同样的问题。在我的情况下,我同时在我的本地计算机上运行两个python jupyter笔记本。第一台笔记本工作正常。第二个一直在扔可怕的
Caused by: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
我不确定权限是如何工作的。它似乎是运行一些如何锁定本地元存储的第一个笔记本。理解为不能在两个不同的会话之间共享元存储。
也许有人知道如何启用多个笔记本?
安迪
答案 1 :(得分:0)
您应该更改/ tmp / hive目录的权限。 在Linux中,chomd 777 / tmp / hive。 然后,重新启动pyspark / hive shell。
这对我来说是可行的。
答案 2 :(得分:0)
我今天有同样的“ bug”。
要在不同笔记本上使用相同的SparkSession,您需要使用相同的内核(对于jupyterlab,“内核”>“更改内核”并为所有笔记本选择相同的内核)