我需要计算
1^2 + 2^2 + ... + n^2 modulo 10234573
表示n
最多 2亿美元。我需要使用本机C ++库。我无法弄清楚如何做到这一点,因为它似乎是一个巨大的数字。
答案 0 :(得分:6)
您可以通过归纳
轻松证明 1 + 4 + 9 + 16 + ... + k**2 + ... + n**2 == n * (n + 1) * (2 * n + 1) / 6
唯一的困难是你必须除以6
,因为总和是一个整数值,你必须考虑6
个案例(每个可能的n mod 6
个结果):< / p>
int SumOfSquares(int n) {
int64_t modulo = 10234573;
int64_t a = n;
int64_t b = a + 1; /* even n+1 can exceed the limit; let's change n to a */
int64_t c = 2 * a + 1; /* 2*n can exceed the limit; let's change n to a */
switch (n % 6) {
case 0:
a /= 6;
break;
case 1:
b /= 2;
c /= 3;
break;
case 2:
a /= 2;
b /= 3;
break;
case 3:
a /= 3;
b /= 2;
break;
case 4:
a /= 2;
c /= 3;
break;
case 5:
b /= 6;
break;
}
/* combersome to ensure we are in [0..modulo ** 2] range */
return (int) (((((a % modulo) * (b % modulo)) % modulo) * (c % modulo)) % modulo);
}
我们可能会有一个高达(modulo - 1) ** 2 == 104746484492329
的因子,因为这超过了最大可能的32位整数值(2147483647
),我们必须使用int64_t
作为因子。
int result = SumOfSquares(2000000000); /* result == 986488 */