我有两个DataFrames,有两列
df1
的 (key1:Long, Value)
带有架构df2
(key2:Array[Long], Value)
我需要在关键列上加入这些DataFrame(找到key1
与key2
中的值之间的匹配值)。但问题是它们的类型不同。有没有办法做到这一点?
答案 0 :(得分:2)
您可以强制转换 key1和key2的类型,然后使用 contains 函数,如下所示。
val df1 = sc.parallelize(Seq((1L,"one.df1"),
(2L,"two.df1"),
(3L,"three.df1"))).toDF("key1","Value")
DF1:
+----+---------+
|key1|Value |
+----+---------+
|1 |one.df1 |
|2 |two.df1 |
|3 |three.df1|
+----+---------+
val df2 = sc.parallelize(Seq((Array(1L,1L),"one.df2"),
(Array(2L,2L),"two.df2"),
(Array(3L,3L),"three.df2"))).toDF("key2","Value")
DF2:
+------+---------+
|key2 |Value |
+------+---------+
|[1, 1]|one.df2 |
|[2, 2]|two.df2 |
|[3, 3]|three.df2|
+------+---------+
val joinedRDD = df1.join(df2, col("key2").cast("string").contains(col("key1").cast("string")))
JOIN:
+----+---------+------+---------+
|key1|Value |key2 |Value |
+----+---------+------+---------+
|1 |one.df1 |[1, 1]|one.df2 |
|2 |two.df1 |[2, 2]|two.df2 |
|3 |three.df1|[3, 3]|three.df2|
+----+---------+------+---------+
答案 1 :(得分:2)
做到这一点的最佳方法(并且不需要任何数据帧的转换或分解)是使用Event="DoAction" Value="Test3">1</Publish>
spark sql表达式,如下所示。
array_contains
请注意,您不能直接使用import org.apache.spark.sql.functions.expr
import spark.implicits._
val df1 = Seq((1L,"one.df1"), (2L,"two.df1"),(3L,"three.df1")).toDF("key1","Value")
val df2 = Seq((Array(1L,1L),"one.df2"), (Array(2L,2L),"two.df2"), (Array(3L,3L),"three.df2")).toDF("key2","Value")
val joinedRDD = df1.join(df2, expr("array_contains(key2, key1)")).show
+----+---------+------+---------+
|key1| Value| key2| Value|
+----+---------+------+---------+
| 1| one.df1|[1, 1]| one.df2|
| 2| two.df1|[2, 2]| two.df2|
| 3|three.df1|[3, 3]|three.df2|
+----+---------+------+---------+
函数,因为它要求第二个参数是文字而不是列表达式。