我正在尝试使用sklearn的TfIdfVectorizer。我遇到了麻烦,因为我的输入可能与TfIdfVectorizer的需求不匹配。我有一堆JSON我加载并附加到列表中,我现在希望它成为TfIdfVectorizer使用的语料库。
代码:
import json
import pandas
from sklearn.feature_extraction.text import TfidfVectorizer
train=pandas.read_csv("train.tsv", sep='\t')
documents=[]
for i,row in train.iterrows():
data = json.loads(row['boilerplate'].lower())
documents.append(data['body'])
vectorizer=TfidfVectorizer(min_df=1)
X = vectorizer.fit_transform(documents)
idf = vectorizer.idf_
print dict(zip(vectorizer.get_feature_names(), idf))
我收到以下错误:
Traceback (most recent call last):
File "<ipython-input-56-94a6b95b0745>", line 1, in <module>
runfile('C:/Users/Guinea Pig/Downloads/try.py', wdir='C:/Users/Guinea Pig/Downloads')
File "D:\Anaconda\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 585, in runfile
execfile(filename, namespace)
File "C:/Users/Guinea Pig/Downloads/try.py", line 19, in <module>
X = vectorizer.fit_transform(documents)
File "D:\Anaconda\lib\site-packages\sklearn\feature_extraction\text.py", line 1219, in fit_transform
X = super(TfidfVectorizer, self).fit_transform(raw_documents)
File "D:\Anaconda\lib\site-packages\sklearn\feature_extraction\text.py", line 780, in fit_transform
vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary)
File "D:\Anaconda\lib\site-packages\sklearn\feature_extraction\text.py", line 715, in _count_vocab
for feature in analyze(doc):
File "D:\Anaconda\lib\site-packages\sklearn\feature_extraction\text.py", line 229, in <lambda>
tokenize(preprocess(self.decode(doc))), stop_words)
File "D:\Anaconda\lib\site-packages\sklearn\feature_extraction\text.py", line 195, in <lambda>
return lambda x: strip_accents(x.lower())
AttributeError: 'NoneType' object has no attribute 'lower'
我发现文档数组由Unicode对象组成,而不是字符串对象,但我似乎无法解决这个问题。蚂蚁的想法?
答案 0 :(得分:0)
最终我用过:
str_docs=[]
for item in documents:
str_docs.append(documents[i].encode('utf-8'))
作为补充