在theano中有效的内核实现

时间:2017-01-11 05:53:09

标签: python neural-network deep-learning theano theano.scan

我刚刚在Theano中实现了一个高斯内核。然而,当我将其作为神经网络的一部分进行测试时,需要的时间太长。似乎内核减法不是并行化的。整个网络培训使用单个处理核心。那么,如何正确地诱导Theano分裂内核操作呢?

import theano.tensor as T
import numpy
import theano

batch_s=5
dims=10
hidd_s=3
out_s=2

missing_param = None #"ignore"

rng = numpy.random.RandomState(1234)
input = T.matrix("input")
X = numpy.asarray(rng.uniform(low=-2.1, high=5.0, size=(batch_s, dims)))

def layer(x):

    W=theano.shared(
        value=numpy.asarray(
            rng.uniform(low=0.001, high=1.0, size=(dims, hidd_s)),
                dtype=theano.config.floatX),
        name='W', borrow=True)

    S=theano.shared(
        value=numpy.asarray(
            rng.uniform(low=10.0, high=100.0, size=(hidd_s, )),
                dtype=theano.config.floatX),
        name='S', borrow=True)

    dot_H = theano.shared(
        value=numpy.zeros((batch_s, hidd_s), 
            dtype=theano.config.floatX), 
        name='dot_H', borrow=True)
    # This is the kernel operation. I have tested with single scan as well
    # as with two nested scans, but operations arenot splitted as in the 
    # case of the usual dot product T.dot().
    for i in range(batch_s):
        for j in range(hidd_s):
            dot_H = T.set_subtensor(dot_H[i,j], 
                     T.exp(-(W.T[j] - x[i]).norm(2) ** 2) / 2 * S[j] ** 2)
    return dot_H

layer_out = theano.function(
                            inputs=[input], 
                            outputs=layer(input), 
                            on_unused_input=missing_param
                            )
print layer_out(X)

非常感谢你。

1 个答案:

答案 0 :(得分:0)

删除循环将允许Theano优化并行化。

首先,您可以通过执行以下操作来避免内循环:

for i in range(batch_s):
    T.exp(-(W.T - X[i]).norm(2,axis=1) ** 2) / 2 * S ** 2)

然后你可以在外循环上使用map:

import theano.tensor as T
import numpy
import theano
import timeit

start = timeit.default_timer()
batch_s=5
dims=10
hidd_s=3
out_s=2

missing_param = None #"ignore"

rng = numpy.random.RandomState(1234)
input = T.matrix("input")
X = numpy.asarray(rng.uniform(low=-2.1, high=5.0, size=(batch_s, dims)))



W=theano.shared(
        value=numpy.asarray(
            rng.uniform(low=0.001, high=1.0, size=(dims, hidd_s)),
                dtype=theano.config.floatX),
        name='W', borrow=True)

S=theano.shared(
        value=numpy.asarray(
            rng.uniform(low=10.0, high=100.0, size=(hidd_s, )),
                dtype=theano.config.floatX),
        name='S', borrow=True)


f_func,f_updates = theano.map(lambda i : T.exp(-(W.T - i).norm(2,axis=1) ** 2) / 2 * S ** 2,input,[])


layer_out = theano.function([input],                                                        
                          f_func,
                          updates=f_updates,
              on_unused_input=missing_param,
                          allow_input_downcast=True)


print layer_out(X.astype('float32'))

stop = timeit.default_timer()

print "running time: " + str(stop - start) 

原始代码的输出是:

[[  1.83701953e-25   1.78982216e-26   9.22911484e-27]
 [  1.60078639e-17   9.21553384e-17   7.62476155e-14]
 [  8.13404350e-17   1.88481821e-17   2.44677516e-15]
 [  3.16093011e-29   1.49698827e-27   2.42876079e-27]
 [  9.57103818e-09   3.46683533e-12   6.66103154e-12]]
running time: 1.30477905273

使用新的:

[[  1.83701953e-25   1.78982216e-26   9.22911484e-27]
 [  1.60078639e-17   9.21553384e-17   7.62476155e-14]
 [  8.13404350e-17   1.88481821e-17   2.44677516e-15]
 [  3.16093011e-29   1.49698827e-27   2.42876079e-27]
 [  9.57103818e-09   3.46683533e-12   6.66103154e-12]]
running time: 0.589275121689