假设我想根据某些特定标准修剪由R中嵌套列表的层次结构组成的树。我可以做到这一点"轻松"足够使用lapply
:
# Based an example from the NetworkD3 documentation
# https://christophergandrud.github.io/networkD3/
URL <- paste0(
"https://cdn.rawgit.com/christophergandrud/networkD3/",
"master/JSONdata//flare.json")
flare <- jsonlite::fromJSON(URL, simplifyDataFrame = FALSE)
# Leaf nodes have a "size" attribute. Let's say we want to
# prune all the nodes with size < 5000.
prune <- function(tree) {
if ("children" %in% names(tree)) {
p <- lapply(tree$children, prune)
pp <- p[!unlist(lapply(p, is.null))]
copied_tree = list()
copied_tree$name = tree$name
copied_tree$children = pp
return(copied_tree)
} else if (tree$size < 5000) {
return(NULL)
}
return(tree)
}
pruned <- prune(flare)
R for Data Science ,Hadley Wickham discusses许多场景,其中purrr
可以替换apply
系列函数来处理分层数据。但是,这些示例似乎处理单个嵌套列表,或处理深层嵌套列表的特定节点。
有没有办法使用purrr
来完成上面讨论过的递归任务?
答案 0 :(得分:3)
library(purrr)
prune_2 <- function(tree) {
# print(tree$name)
# print(map_lgl(tree$children, ~ "size" %in% names(.x)))
tree$children %<>%
map_if(~ "children" %in% names(.x), prune_2) %>%
discard(~ if ("size" %in% names(.x)) .x$size < 5000 else FALSE)
tree
}
pruned_2 <- prune_2(flare)
identical(pruned, pruned_2)
# [1] TRUE