阅读不良的CSV文件结构

时间:2017-01-09 02:54:02

标签: r csv pandas readr

我正在尝试读取一个大型的csv数据文件(由,分隔),并且我继续陷入如下行: 链接到原始文件:“http://daniels-pull.universityofdenv.netdna-cdn.com/assets/GeneralOccurrencesAll.csv

| RIN    | UCR_Group | Loc                                         |
|--------|-----------|---------------------------------------------|
|490658  | Property  | 400 BLOCK 17TH ST, 5TH FL                   |
|506928  | Disorder  | 1400 BLOCK W COLORADO AVE, COLORADO SPRINGS |

如您所见,该文件的分隔符也在列中使用。有没有办法将列的分隔符指定为要在文件中读取的正则表达式,或者我是否需要查看使用read.fwf查找每个字段的最大长度,并使用它解析数据? 目前,这是我到目前为止提出的代码:

datafile <- "http://daniels-pull.universityofdenv.netdna-cdn.com/assets/GeneralOccurrencesAll.csv"
new <-readr::read_delim(datafile, sep ='[\\S],[\\S]')  
new <-read.table(datafile, sep ='[\\S],[\\S]' )

我应该使用read.fwf,还是尝试手动提取问题列?任何帮助将不胜感激。

编辑:

对于奖励积分,我真的想构建一个能够检测csv文件中的错误列的函数,或者看起来像这样的数据可能会弄乱文件的结构,例如这种情况。这样,我不必乱用文本编辑器,并可以编程方式在文件中找到这些错误。关于如何建立这样的东西的想法?

4 个答案:

答案 0 :(得分:2)

使用panda.read_csv和正则表达式负面展望未来。同样的正则表达式也适用于R

import pandas as pd

df = pd.read_csv(filename, sep=r',(?!\s)')

df包含逗号的行过滤LOC,以验证我们是否已正确解析:

df[df.LOC.str.contains(',')]

enter image description here

答案 1 :(得分:2)

用分号替换非空格包围的每个逗号,然后使用read.csv2读入结果。

(用Lines命令替换readLines(u)以从u读取它。如果文件中有分号,则使用不同的字符并在sep=中指定它参数read.csv2read.csv以及第二个参数gsub。)

read.csv2(text = gsub(",(\\S)", ";\\1", Lines)))

,并提供:

     RIN UCR_Group                                         Loc
1 490658  Property                   400 BLOCK 17TH ST, 5TH FL
2 506928  Disorder 1400 BLOCK W COLORADO AVE, COLORADO SPRINGS

注意:我们将其用作输入Lines

Lines <- c("RIN,UCR_Group,Loc", 
  "490658,Property,400 BLOCK 17TH ST, 5TH FL", 
  "506928,Disorder,1400 BLOCK W COLORADO AVE, COLORADO SPRINGS")

更新:在实际文件中似乎空格可以出现在有效的逗号分隔符之前,并且有一个字符字段,因此我们相应地修改了模式。以下是文件前3行的结果:

u <- "http://daniels-pull.universityofdenv.netdna-cdn.com/assets/GeneralOccurrencesAll.csv"
Lines <- readLines(u, 3)

read.csv2(text = gsub(",(\\S)", ";\\1", Lines))

,并提供:

     RIN               UCR_Group                            UCR_Cat
1 416667 Crimes Against Property Criminal Mischief/Damaged Property
2 416673  Crimes Against Persons              Forcible Sex Offenses
              EXP_TRANSLATION         OCC_DATE OCC_TIME                     LOC
1 CRIMINAL MISCHIEF - MTR VEH 1/1/2010 0:00:00      145  200 BLOCK S ZENOBIA ST
2             SEX ASLT - RAPE 1/1/2010 0:00:00      300 1500 BLOCK S DECATUR ST
  TRANSLATION       PIN               DOB SEX          X          Y     LON
1 VICTIM      235602181  5/6/1979 0:00:00   M 3126041.08 1684996.73 -105.05
2 ARRESTEE    219220590 3/19/1988 0:00:00   M 3134340.56 1676360.06 -105.02
    LAT
1 39.71
2 39.68

答案 2 :(得分:1)

您知道哪个字段包含非转义逗号:

library(stringi)
library(purrr)

txt <- readr::read_lines("http://daniels-pull.universityofdenv.netdna-cdn.com/assets/GeneralOccurrencesAll.csv")
commas <- stri_locate_all_fixed(txt, ",")

map2_chr(txt[1:100], commas[1:100], function(x, y) {
  len <- nrow(y)
  bits <- c(1:6, (len-6):len)
  for (i in bits) { stri_sub(x, y[i,1], y[i,2]) <- ";" }
  x
}) -> rd

read.table(text=rd, header=TRUE, sep=";", stringsAsFactors=FALSE) %>%
  dplyr::glimpse()
## Observations: 99
## Variables: 14
## $ RIN             <int> 416667, 416673, 416674, 416680, 416684, 416686...
## $ UCR_Group       <chr> "Crimes Against Property", "Crimes Against Per...
## $ UCR_Cat         <chr> "Criminal Mischief/Damaged Property", "Forcibl...
## $ EXP_TRANSLATION <chr> "CRIMINAL MISCHIEF - MTR VEH", "SEX ASLT - RAP...
## $ OCC_DATE        <chr> "1/1/2010 0:00:00", "1/1/2010 0:00:00", "1/1/2...
## $ OCC_TIME        <int> 145, 300, 500, 730, 200, 440, 100, 851, 140, 2...
## $ LOC.TRANSLATION <chr> "200 BLOCK S ZENOBIA ST,VICTIM     ", "1500 BL...
## $ PIN             <int> 235602181, 219220590, 119013720, 174326399, 32...
## $ DOB             <chr> "5/6/1979 0:00:00", "3/19/1988 0:00:00", "5/25...
## $ SEX             <chr> "M", "M", "M", "M", "F", "F", "F", "F", "F", "...
## $ X               <dbl> 3126041, 3134341, 3134360, 3127695, 3193317, 3...
## $ Y               <dbl> 1684997, 1676360, 1700160, 1682545, 1708673, 1...
## $ LON             <dbl> -105.05, -105.02, -105.02, -105.04, -104.81, -...
## $ LAT             <dbl> 39.71, 39.68, 39.75, 39.70, 39.77, 39.78, 39.7...

答案 3 :(得分:0)

这是一个有用的示例,显示您可以使用正则表达式来解析此文件,依赖于地址中的逗号有空格的事实。如果这条规则并不总是成立,那么这当然会变得更加复杂:

txt <- "RIN,UCR_Group,Loc
123456,Property,1 STREET
490658,Property,400 BLOCK 17TH ST, 5TH FL
506928,Disorder,1400 BLOCK W COLORADO AVE, COLORADO SPRINGS"

dat <- readLines(textConnection(txt))
# in a real example:
# dat <- readLines("filename.csv")

spl <- strsplit(dat, "(?<=\\S),(?=\\S)", perl=TRUE)
setNames(data.frame(do.call(rbind, spl[-1])), spl[[1]])

#     RIN UCR_Group                                         Loc
#1 123456  Property                                    1 STREET
#2 490658  Property                   400 BLOCK 17TH ST, 5TH FL
#3 506928  Disorder 1400 BLOCK W COLORADO AVE, COLORADO SPRINGS