将svg弧转换为线

时间:2017-01-08 21:11:38

标签: svg geometry

我正在尝试将SVG弧转换为一系列线段。背景是,我想使用(reportlab)[http://www.reportlab.com/]

绘制弧

svg给了我这些参数(符合here)。

RX,RY,x轴旋转,大圆弧标志,扫描标志,DX,DY

现在我需要确定这个弧之后的线。但我不明白如何将其转换为几何更有用的东西。

如何确定椭圆弧的中心及其旋转?

2 个答案:

答案 0 :(得分:3)

SVG 椭圆弧非常棘手,我花了一些时间来实现它(甚至遵循 SVG 规范)。我在 C ++

中得到了类似的结果
//---------------------------------------------------------------------------
class svg_usek  // virtual class for svg_line types
    {
public:
    int pat;                // svg::pat[] index
    virtual void reset(){};
    virtual double getl (double mx,double my){ return 1.0; };
    virtual double getdt(double dl,double mx,double my){ return 0.1; };
    virtual void getpnt(double &x,double &y,double t){};
    virtual void compute(){};
    virtual void getcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val){};
    virtual void setcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val,int &an,int &ad,int &av){};
    };
//---------------------------------------------------------------------------
class svg_ela:public svg_usek       // sweep = 0 arc goes from line p0->p1 CW
    {                               // sweep = 1 arc goes from line p0->p1 CCW
public:                             // larc is unused if |da|=PI
    double x0,y0,x1,y1,a,b,alfa; int sweep,larc;
    double sx,sy,a0,a1,da,ang;      // sx,sy rotated center by ang
    double cx,cy;                   // real center
    void reset() { x0=0; y0=0; x1=0; y1=0; a=0; b=0; alfa=0; sweep=false; larc=false; compute(); }
    double getl (double mx,double my);
//  double getdt(double dl,double mx,double my);
    double getdt(double dl,double mx,double my) { int n; double dt; dt=divide(dl,getl(mx,my)); n=floor(divide(1.0,dt)); if (n<1) n=1; return divide(1.0,n); }
    void getpnt(double &x,double &y,double t);
    void compute();
    void getcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val);
    void setcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val,int &an,int &ad,int &av);
    svg_ela()       {}
    svg_ela(svg_ela& a) { *this=a; }
    ~svg_ela()  {}
    svg_ela* operator = (const svg_ela *a) { *this=*a; return this; }
    //svg_ela* operator = (const svg_ela &a) { ...copy... return this; }
    };
//---------------------------------------------------------------------------
void svg_ela::getpnt(double &x,double &y,double t)
    {
    double c,s,xx,yy;
    t=a0+(da*t);
    xx=sx+a*cos(t);
    yy=sy+b*sin(t);
    c=cos(-ang);
    s=sin(-ang);
    x=xx*c-yy*s;
    y=xx*s+yy*c;
    }
//---------------------------------------------------------------------------
void svg_ela::compute()
    {
    double  ax,ay,bx,by;            // body
    double  vx,vy,l,db;
    int     _sweep;
    double  c,s,e;

    ang=pi-alfa;
    _sweep=sweep;
    if (larc) _sweep=!_sweep;

    e=divide(a,b);
    c=cos(ang);
    s=sin(ang);
    ax=x0*c-y0*s;
    ay=x0*s+y0*c;
    bx=x1*c-y1*s;
    by=x1*s+y1*c;

    ay*=e;                  // transform to circle
    by*=e;

    sx=0.5*(ax+bx);         // mid point between A,B
    sy=0.5*(ay+by);
    vx=(ay-by);
    vy=(bx-ax);
    l=divide(a*a,(vx*vx)+(vy*vy))-0.25;
    if (l<0) l=0;
    l=sqrt(l);
    vx*=l;
    vy*=l;

    if (_sweep)
        {
        sx+=vx;
        sy+=vy;
        }
    else{
        sx-=vx;
        sy-=vy;
        }

    a0=atanxy(ax-sx,ay-sy);
    a1=atanxy(bx-sx,by-sy);
//  ay=divide(ay,e);
//  by=divide(by,e);
    sy=divide(sy,e);


    da=a1-a0;
    if (fabs(fabs(da)-pi)<=_acc_zero_ang)       // half arc is without larc and sweep is not working instead change a0,a1
        {
        db=(0.5*(a0+a1))-atanxy(bx-ax,by-ay);
        while (db<-pi) db+=pi2;     // db<0 CCW ... sweep=1
        while (db>+pi) db-=pi2;     // db>0  CW ... sweep=0
        _sweep=0;
        if ((db<0.0)&&(!sweep)) _sweep=1;
        if ((db>0.0)&&( sweep)) _sweep=1;
        if (_sweep)
            {
//          a=0; b=0;
            if (da>=0.0) a1-=pi2;
            if (da< 0.0) a0-=pi2;
            }
        }
    else if (larc)              // big arc
        {
        if ((da< pi)&&(da>=0.0)) a1-=pi2;
        if ((da>-pi)&&(da< 0.0)) a0-=pi2;
        }
    else{                       // small arc
        if (da>+pi) a1-=pi2;
        if (da<-pi) a0-=pi2;
        }
    da=a1-a0;

    // realny stred
    c=cos(+ang);
    s=sin(+ang);
    cx=sx*c-sy*s;
    cy=sx*s+sy*c;
    }
//---------------------------------------------------------------------------

atanxy(x,y)atan2(y,x)相同。您可以忽略课程svg_useksvg_ela的使用很简单,首先将SVG参数提供给它:

  • x0,y0是起点(来自之前的<path>元素)
  • x1,y1是端点(x0+dx,y0+dy
  • a,b和您一样rx,ry
  • alfa旋转角度[rad]因此您需要转换度数...
  • sweep,larc和你一样。

然后调用svg_ela::compute();来计算插值所需的所有变量。完成此初始化后,为了从弧获取任何点,只需调用svg_ela::getpnt(x,y,t);,其中x,y是返回的坐标,t=<0,1>是输入参数。所有其他方法对您来说并不重要。要渲染ARC,只需执行以下操作:

svg_ela arc; // your initialized arc here
int e; double x,y,t;
arc.getpnt(x,y,0.0);
Canvas->MoveTo(x,y);
for (e=1,t=0.0;e;t+=0.02)
 {
 if (t>=1.0) { t=1.0; e=0; }
 arc.getpnt(x,y,t);
 Canvas->LineTo(x,y);
 }

不要忘记 SVG <g><path>可以有变换矩阵,因此您应该在每次svg_ela::getpnt(x,y,t)调用后应用它们。

如果您对这些内容的作用感兴趣compute(),只需:{/ p>

  1. 旋转空间,使椭圆半轴轴对齐。
  2. 缩放空间,使椭圆变为圆形。
  3. 计算圆的中心点

    中心位于与线(x0,y0),(x1,y1)垂直的线上,也位于其中点。距离由Pytagoras和sweeplarc组合的方向计算。

  4. 缩放回椭圆

  5. 旋转回来
  6. 现在我们有真实的中心位置,所以也计算相对于它的真实终点角度。现在,对于椭圆上的每个点,只需通过椭圆的标准参数方程计算它,并旋转到所需的位置,这是getpnt(x,y,t)所做的。

    希望它有所帮助。

答案 1 :(得分:0)

对于我的 Java SVG 应用程序,我需要将路径弧转换为线。我使用了上面的代码并将其转换为 Java 类并进行了一些清理。

package de.berndbock.tinysvg.helper;

/**
 * Breaks down SVG arcs into line segments.
 * 
 * @author Bernd Bock <chef@bernd-bock.de>
 */
public class ArcSegmenter {
    
    private static final double PI2 = Math.PI * 2;
    private static final double ACC_ZERO_ANG = 0.000001 * Math.PI / 180.0;
    
    private final double x0;
    private final double y0;
    private final double x1;
    private final double y1;
    private final double a;
    private final double b;
    private final double alfa;
    private final boolean sweep;
    private final boolean larc;
    private double sx, sy, a0, a1, da, ang;  // sx, sy rotated center by ang
//    private double cx, cy;                   // real center
    
    public ArcSegmenter(double x0, double y0, double x1, double y1 , double a, double b, double alfa, int sweep, int larc) {
        this.x0 = x0;
        this.y0 = y0;
        this.x1 = x1;
        this.y1 = y1;
        this.a = a;
        this.b = b;
        this.alfa = alfa;
        this.sweep = sweep != 0;
        this.larc = larc != 0;
        compute();
    }
    
    private void compute() {
        double  ax, ay, bx, by;            // body
        double  vx, vy, l, db;
        boolean _sweep;
        double  c, s, e;

        ang = Math.PI - alfa;
        _sweep = sweep;
        if (larc) {
            _sweep = !_sweep;
        }

        e = a / b;
        c = Math.cos(ang);
        s = Math.sin(ang);
        ax = x0 * c - y0 * s;
        ay = x0 * s + y0 * c;
        bx = x1 * c - y1 * s;
        by = x1 * s + y1 * c;

        ay *= e;                  // transform to circle
        by *= e;

        sx = 0.5 * (ax + bx);     // mid point between A,B
        sy = 0.5 * (ay + by);
        vx = (ay - by);
        vy = (bx - ax);
        l = a * a / (vx * vx + vy * vy) - 0.25;
        if (l < 0) {
            l = 0;
        }
        l = Math.sqrt(l);
        vx *= l;
        vy *= l;

        if (_sweep) {
            sx += vx;
            sy += vy;
        }
        else {
            sx -= vx;
            sy -= vy;
        }

        a0 = Math.atan2(ay - sy, ax - sx);
        a1 = Math.atan2(by - sy, bx - sx);
        sy = sy / e;

        da = a1 - a0;
        if (Math.abs(Math.abs(da) - Math.PI) <= ACC_ZERO_ANG) {     // half arc is without larc and sweep is not working instead change a0,a1
            db = (0.5 * (a0 + a1)) - Math.atan2(by - ay, bx - ax);
            while (db < -Math.PI) {
                db += PI2;     // db<0 CCW ... sweep=1
            }
            while (db >  Math.PI) {
                db -= PI2;     // db>0  CW ... sweep=0
            }
            _sweep = false;
            if ((db < 0.0) && (!sweep)) {
                _sweep = true;
            }
            if ((db > 0.0) && ( sweep)) {
                _sweep = true;
            }
            if (_sweep) {
                if (da >= 0.0) {
                    a1 -= PI2;
                }
                if (da <  0.0) {
                    a0 -= PI2;
                }
            }
        }
        else if (larc) {            // big arc
            if ((da <  Math.PI) && (da >= 0.0)) {
                a1 -= PI2;
            }
            if ((da > -Math.PI) && (da <  0.0)) {
                a0 -= PI2;
            }
        }
        else {                      // small arc
            if (da >  Math.PI) {
                a1 -= PI2;
            }
            if (da < -Math.PI) {
                a0 -= PI2;
            }
        }
        da = a1 - a0;

// center point calculation:
//        c = Math.cos(ang);
//        s = Math.sin(ang);
//        cx = sx * c - sy * s;
//        cy = sx * s + sy * c;
    }
    
    public Point getpnt(double t) {
        Point result = new Point();
        double c, s, x, y;
        
        t = a0 + da * t;
        x = sx + a * Math.cos(t);
        y = sy + b * Math.sin(t);
        c = Math.cos(-ang);
        s = Math.sin(-ang);
        result.x = x * c - y * s;
        result.y = x * s + y * c;
        
        return result;
    }
    
//    public Point getCenterPoint() {
//        return new Point(cx, cy);
//    }
}

如果您需要中心点,请取消注释相应的行。 示例代码让您了解用法:

ArcSegmenter segmenter = new ArcSegmenter(currentPoint.x, currentPoint.y, endPoint.x, endPoint.y, rx, ry, phi, sf, lf);
Point p1, p2;
p1 = segmenter.getpnt(0.0);
Line line;

for (double t = increment; t < 1.000001f; t += increment) {
    p2 = segmenter.getpnt(t);
    line = new Line(null, parent, p1.x, p1.y, p2.x, p2.y);
    elements.add(line);
    p1 = p2;
}