当我们使用
时,我对这种差异感到困惑 df.filter(col("c1") === null) and df.filter(col("c1").isNull)
相同的数据帧我得到了重视 === null但isNull为零。请帮我理解其中的区别。谢谢
答案 0 :(得分:26)
首先,除非出于兼容性原因,否则不要在Scala代码中使用null
。
关于你的问题,这是一个简单的SQL。 col("c1") === null
被解释为c1 = NULL
,并且由于NULL
标记了未定义的值,因此对于包括NULL
本身在内的任何值都未定义结果。
spark.sql("SELECT NULL = NULL").show
+-------------+
|(NULL = NULL)|
+-------------+
| null|
+-------------+
spark.sql("SELECT NULL != NULL").show
+-------------------+
|(NOT (NULL = NULL))|
+-------------------+
| null|
+-------------------+
spark.sql("SELECT TRUE != NULL").show
+------------------------------------+
|(NOT (true = CAST(NULL AS BOOLEAN)))|
+------------------------------------+
| null|
+------------------------------------+
spark.sql("SELECT TRUE = NULL").show
+------------------------------+
|(true = CAST(NULL AS BOOLEAN))|
+------------------------------+
| null|
+------------------------------+
检查NULL
的唯一有效方法是:
IS NULL
:
spark.sql("SELECT NULL IS NULL").show
+--------------+
|(NULL IS NULL)|
+--------------+
| true|
+--------------+
spark.sql("SELECT TRUE IS NULL").show
+--------------+
|(true IS NULL)|
+--------------+
| false|
+--------------+
IS NOT NULL
:
spark.sql("SELECT NULL IS NOT NULL").show
+------------------+
|(NULL IS NOT NULL)|
+------------------+
| false|
+------------------+
spark.sql("SELECT TRUE IS NOT NULL").show
+------------------+
|(true IS NOT NULL)|
+------------------+
| true|
+------------------+
分别在DataFrame
DSL中实现Column.isNull
和Column.isNotNull
。
注意强>:
对于NULL
- 安全比较使用IS DISTINCT
/ IS NOT DISTINCT
:
spark.sql("SELECT NULL IS NOT DISTINCT FROM NULL").show
+---------------+
|(NULL <=> NULL)|
+---------------+
| true|
+---------------+
spark.sql("SELECT NULL IS NOT DISTINCT FROM TRUE").show
+--------------------------------+
|(CAST(NULL AS BOOLEAN) <=> true)|
+--------------------------------+
| false|
+--------------------------------+
或not(_ <=> _)
/ <=>
spark.sql("SELECT NULL AS col1, NULL AS col2").select($"col1" <=> $"col2").show
+---------------+
|(col1 <=> col2)|
+---------------+
| true|
+---------------+
spark.sql("SELECT NULL AS col1, TRUE AS col2").select($"col1" <=> $"col2").show
+---------------+
|(col1 <=> col2)|
+---------------+
| false|
+---------------+
分别在SQL和DataFrame
DSL中。
相关强>:
答案 1 :(得分:4)
通常,解决Spark Dataframes中意外结果的最佳方法是查看解释计划。请考虑以下示例:
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.functions._
object Example extends App {
val session = SparkSession.builder().master("local[*]").getOrCreate()
case class Record(c1: String, c2: String)
val data = List(Record("a", "b"), Record(null, "c"))
val rdd = session.sparkContext.parallelize(data)
import session.implicits._
val df: DataFrame = rdd.toDF
val filtered = df.filter(col("c1") === null)
println(filtered.count()) // <-- outputs 0, not expected
val filtered2 = df.filter(col("c1").isNull)
println(filtered2.count())
println(filtered2) // <- outputs 1, as expected
filtered.explain(true)
filtered2.explain(true)
}
第一个解释计划显示:
== Physical Plan ==
*Filter (isnotnull(c1#2) && null)
+- Scan ExistingRDD[c1#2,c2#3]
== Parsed Logical Plan ==
'Filter isnull('c1)
+- LogicalRDD [c1#2, c2#3]
此过滤条款看似荒谬。 &&
到null
可确保永远无法解析为true
。
第二个解释计划如下:
== Physical Plan ==
*Filter isnull(c1#2)
+- Scan ExistingRDD[c1#2,c2#3]
这里的过滤器是期望和想要的。