当我在其上运行alpha
时,我在构造上有五个项目,我得到以下结果,没有任何错误
psych::alpha(construct,
na.rm = TRUE,
title = 'myscale',
n.iter = 1000)
Reliability analysis myscale
Call: psych::alpha(x = construct, title = "myscale", na.rm = TRUE,
n.iter = 1000)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd
0.81 0.81 0.78 0.46 4.3 0.013 2.6 0.89
lower alpha upper 95% confidence boundaries
0.78 0.81 0.84
lower median upper bootstrapped confidence intervals
0.77 0.81 0.84
我一直在阅读论文From Alpha to omega: A practical solution to the pervasive problem of internal consistency estimation
link
建议使用以下代码
MBESS::ci.reliability(construct, interval.type="bca", B=1000, type = "omega")
$est
[1] 0.8107376
$se
[1] 0.01651936
$ci.lower
[1] 0.7764029
$ci.upper
[1] 0.839944
$conf.level
[1] 0.95
$type
[1] "omega"
$interval.type
[1] "bca bootstrap"
我一直试图使用心理包在我的样本集上运行omega,以便在我的分析中保持一致
psych::omega(m = construct,
nfactors = 1, fm = "pa", n.iter = 1000, p = 0.05,
title = "Omega", plot = FALSE, n.obs = 506)
我收到两条错误消息
在factor.scores中,相关矩阵是单数,使用近似值 Omega_h为1因子没有意义,只是omega_t
发生此警告是因为Omega_h的列数小了两个。关于SO的上一个问题有点回答 McDonalds omega: warnings in R
错误即时消息
fac中的错误(r = r,nfactors = nfactors,n.obs = n.obs,rotate = rotate,: 对不起,相关矩阵中的缺失值(NAs)不允许我继续。 请删除这些变量,然后重试。 另外:有50个或更多警告(使用警告()查看前50个)
没有遗漏的值,所以我不确定第二个错误
我的构造的细节是
Q1 Q2 Q3
Min. :0.000 Min. :0.000 Min. :0.000
1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
Median :3.000 Median :2.000 Median :3.000
Mean :2.597 Mean :2.393 Mean :3.227
3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:4.000
Max. :6.000 Max. :6.000 Max. :6.000
Q4 Q5
Min. :0.00 Min. :0.000
1st Qu.:1.00 1st Qu.:2.000
Median :2.00 Median :2.000
Mean :2.17 Mean :2.445
3rd Qu.:3.00 3rd Qu.:3.000
Max. :6.00 Max. :6.000
创建具有相同属性的数据--100个条目(Alpha大约0.56)但它在omega上生成相同的错误
structure(list(Q1 = c(4, 5, 3, 5, 4, 5, 3, 5, 5, 5, 6,
3, 5, 4, 6, 5, 5, 6, 7, 4, 5, 5, 3, 4, 4, 5, 4, 3, 5, 4, 5, 5,
6, 6, 3, 6, 3, 4, 4, 4, 6, 5, 3, 2, 6, 6, 4, 5, 4, 3, 6, 4, 4,
5, 6, 2, 4, 3, 4, 6, 4, 6, 4, 5, 5, 6, 4, 6, 5, 5, 4, 5, 6, 6,
2, 5, 4, 3, 4, 4, 4, 6, 3, 3, 5, 4, 4, 4, 5, 5, 5, 3, 6, 6, 6,
6, 5, 4, 3, 5), Q2 = c(7, 4, 4, 4, 4, 6, 6, 6, 7, 6, 5,
6, 5, 4, 5, 6, 6, 6, 7, 5, 4, 4, 6, 6, 4, 4, 6, 2, 6, 5, 4, 6,
4, 6, 6, 6, 5, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 6, 2, 6, 6, 5, 4,
6, 6, 4, 4, 7, 6, 5, 5, 5, 5, 6, 5, 5, 4, 5, 5, 5, 4, 6, 7, 5,
5, 5, 6, 5, 6, 5, 6, 7, 2, 6, 5, 7, 3, 5, 5, 3, 3, 3, 7, 4, 5,
6, 6, 6, 5, 7), Q3 = c(5, 4, 5, 6, 4, 4, 5, 4, 2, 6, 5,
5, 5, 5, 7, 5, 5, 6, 7, 6, 3, 6, 6, 6, 5, 6, 6, 5, 5, 4, 5, 5,
6, 6, 5, 6, 5, 5, 4, 4, 6, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 5, 4,
3, 5, 4, 5, 6, 6, 6, 4, 5, 5, 5, 6, 4, 5, 5, 7, 4, 5, 6, 6, 5,
5, 3, 3, 5, 4, 6, 5, 5, 1, 3, 5, 3, 2, 5, 4, 6, 6, 6, 6, 4, 6,
3, 6, 6, 6, 5), Q4 = c(6, 6, 4, 7, 4, 6, 7, 6, 7, 6, 6,
6, 5, 7, 7, 6, 6, 5, 7, 7, 6, 6, 7, 7, 6, 6, 6, 5, 6, 7, 5, 6,
7, 5, 4, 6, 4, 3, 6, 4, 6, 6, 6, 3, 5, 7, 5, 6, 4, 6, 7, 6, 7,
4, 6, 3, 5, 7, 5, 4, 6, 6, 4, 6, 5, 5, 5, 5, 7, 7, 7, 6, 6, 6,
5, 6, 6, 4, 5, 7, 6, 7, 3, 5, 6, 5, 6, 5, 5, 7, 7, 6, 6, 2, 7,
6, 6, 7, 7, 5)), .Names = c("Q1", "Q2", "Q3",
"Q4"), row.names = c(NA, 100L), class = "data.frame")
任何人都可以看到我摔倒的地方吗?
感谢您的时间
答案 0 :(得分:2)
所以我尝试了这个:
psych::omega(m = construct)
并且它适用于此结果:
Omega
Call: psych::omega(m = construct)
Alpha: 0.56
G.6: 0.49
Omega Hierarchical: 0.53
Omega H asymptotic: 0.89
Omega Total 0.6
Schmid Leiman Factor loadings greater than 0.2
g F1* F2* F3* h2 u2 p2
Q1 0.41 0.30 0.26 0.74 0.65
Q2 0.37 0.25 0.20 0.80 0.67
Q3 0.50 0.25 0.31 0.69 0.80
Q4 0.64 0.23 0.46 0.54 0.89
With eigenvalues of:
g F1* F2* F3*
0.95 0.15 0.06 0.05
general/max 6.35 max/min = 2.83
mean percent general = 0.75 with sd = 0.11 and cv of 0.15
Explained Common Variance of the general factor = 0.78
The degrees of freedom are -3 and the fit is 0
The number of observations was 100 with Chi Square = 0 with prob < NA
The root mean square of the residuals is 0
The df corrected root mean square of the residuals is NA
Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 2 and the fit is 0.01
The number of observations was 100 with Chi Square = 0.62 with prob < 0.73
The root mean square of the residuals is 0.03
The df corrected root mean square of the residuals is 0.05
RMSEA index = 0 and the 90 % confidence intervals are NA 0.14
BIC = -8.59
Measures of factor score adequacy
g F1* F2* F3*
Correlation of scores with factors 0.75 0.37 0.27 0.24
Multiple R square of scores with factors 0.57 0.14 0.07 0.06
Minimum correlation of factor score estimates 0.14 -0.72 -0.86 -0.88
Total, General and Subset omega for each subset
g F1* F2* F3*
Omega total for total scores and subscales 0.60 0.37 0.31 0.46
Omega general for total scores and subscales 0.53 0.25 0.25 0.41
Omega group for total scores and subscales 0.06 0.12 0.06 0.05
我检查了默认设置nfactors = 3
和n.iter = 1
。然后我慢慢增加了n.iter,并减少了n.factor,它一直工作到n.iter = 7,并保持nfactors为3
psych::omega(m = construct, n.iter = 7, p = 0.05, nfactors = 3)
使用完整的数据集,您应该能够获得更高的n.iter