对于那里的人来说,这是一个简单的问题:
我有一个如下所示的数据框:
import pandas as pd
names_raw = {
'device_id': [ '1d28d33a-c98e-4986-a7bb-5881d222c9a8','54322099-e76d-4986-afd2-0861e2113a16','ec3a9f9d-8e4d-4986-bea8-c17c361366e9','cc8e247d-4e2e-4986-b783-e516d03a358c','ca2d8769-ccf5-4986-8aed-741ca68e94cd','12178e22-6d64-4986-966a-374326fdaf3d','50ba7a2e-a1aa-4986-86a7-08e0605dc702','f427c8e9-65d4-46de-b986-8f8e79242842','cee68e2b-135f-45b0-be4b-7c23009866ba','e785988e-2693-47ad-9899-0049860ccaa7','a1986866-13f8-4dbe-b661-8c9f78eac745','a9998ecd-9fe9-4932-870d-29c6b5df1214','9b88e362-b06d-4317-96f5-f266c986a8d6','a04498ef-fd7c-4aa4-bffc-9158ccbad3a1'],
'pod_id': ['B00001','B00011','B00013','B00016','B00021','B00023','B00024','B00026','B00027','B00028','B00030','B00032','B00034','B00039'],
'native_id': ['zim_pod_0001','zim_pod_0002', 'zim_pod_0003', 'zim_pod_0004', 'zim_pod_0005', 'zim_pod_0006', 'zim_pod_0007', 'zim_pod_0008', 'zim_pod_0009', 'zim_pod_0010', 'zim_pod_0011', 'zim_pod_0012', 'zim_pod_0013','zim_pod_0014']
}
names = pd.DataFrame(names_raw, columns = ['device_id', 'pod_id', 'native_id'])
另一个看起来像这样的数据框:
>>> df
device_id day month year rain
0 1d28d33a-c98e-4986-a7bb-5881d222c9a8 31 12 2016 0.0
1 54322099-e76d-4986-afd2-0861e2113a16 31 12 2016 0.0
2 ec3a9f9d-8e4d-4986-bea8-c17c361366e9 31 12 2016 0.0
3 cc8e247d-4e2e-4986-b783-e516d03a358c 31 12 2016 1.2
4 ca2d8769-ccf5-4986-8aed-741ca68e94cd 31 12 2016 2.2
5 12178e22-6d64-4986-966a-374326fdaf3d 31 12 2016 0.2
6 9b88e362-b06d-4317-96f5-f266c986a8d6 31 12 2016 0.0
我想将device_id
列替换为native_id
列。如何使用最少量的代码来完成?
最终数据框应如下所示:
>>> df
native_id day month year rain
0 zim_pod_0001 31 12 2016 0.0
1 zim_pod_0002 31 12 2016 0.0
2 zim_pod_0003 31 12 2016 0.0
等。等...
答案 0 :(得分:1)
试试这个:
add_filter( 'woocommerce_enqueue_styles', '__return_empty_array' );
或者,如果您不想保留df['native_id'] = df.device_id.map(names.set_index('device_id')['native_id'])
DF中的device_id
列:
df
答案 1 :(得分:0)
使用Pandas内置的merge()
方法。它本质上作为一个连接,并且使用起来非常简单。将device_id指定为连接键,然后选择所需的列,如下所示:
df2 = pd.merge(df,names,on="device_id")[["native_id","day","month","year","rain"]]
结果:
native_id day month year rain
0 zim_pod_0001 31 12 2016 0.0
1 zim_pod_0002 31 12 2016 0.0
2 zim_pod_0003 31 12 2016 0.0
3 zim_pod_0004 31 12 2016 1.2
4 zim_pod_0005 31 12 2016 2.2
5 zim_pod_0006 31 12 2016 0.2
6 zim_pod_0013 31 12 2016 0.0