我试图对我在UCI机器学习数据库中找到的一些文本识别数据进行k近邻预测。 (this answer)
我交叉验证了数据并测试了准确性,没有任何问题,但我无法运行classifier.predict()。任何人都可以阐明为什么我会收到这个错误?我在sklearn网站上阅读了维度的诅咒,但我在修复代码时遇到了麻烦。
到目前为止我的代码如下:
Letter x-box y-box box_width box_height on_pix x-bar_mean \
0 T 2 8 3 5 1 8
1 I 5 12 3 7 2 10
2 D 4 11 6 8 6 10
3 N 7 11 6 6 3 5
4 G 2 1 3 1 1 8
y-bar_mean x2bar_mean y2bar_mean xybar_mean x2y_mean xy2_mean \
0 13 0 6 6 10 8
1 5 5 4 13 3 9
2 6 2 6 10 3 7
3 9 4 6 4 4 10
4 6 6 6 6 5 9
x-ege xegvy y-ege yegvx
0 0 8 0 8
1 2 8 4 10
2 3 7 3 9
3 6 10 2 8
4 1 7 5 10
df.head()产生:
Traceback (most recent call last):
File "C:\Users\jai_j\Desktop\Python Projects\K Means ML.py", line 31, in <module>
prediction = clf.predict(example)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\neighbors\classification.py", line 145, in predict
neigh_dist, neigh_ind = self.kneighbors(X)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\neighbors\base.py", line 381, in kneighbors
for s in gen_even_slices(X.shape[0], n_jobs)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 758, in __call__
while self.dispatch_one_batch(iterator):
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 608, in dispatch_one_batch
self._dispatch(tasks)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 571, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py", line 109, in apply_async
result = ImmediateResult(func)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py", line 326, in __init__
self.results = batch()
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 131, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 131, in <listcomp>
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "sklearn\neighbors\binary_tree.pxi", line 1294, in sklearn.neighbors.kd_tree.BinaryTree.query (sklearn\neighbors\kd_tree.c:11325)
ValueError: query data dimension must match training data dimension
我的错误Feed是这样的:
{{1}}
提前感谢您的帮助,我会在此期间继续寻找答案
答案 0 :(得分:1)
您的问题是您没有重塑example
并且您正在重塑不正确的维度。您正在将X
数组重新定义为(16, N)
,其中N
是X
中的观察数。
因此,当您尝试在example
上进行预测时,最终会使用您的分类器预测X
重新定义为N
列,而不是16列。你训练过的人。
您似乎想要预测单个示例,因此您应该重塑它而不是X
。据推测,您需要example = example.reshape(1, -1)
而不是example = X.reshape(len(example), -1)
。
最初,您使用形状example
创建(16,)
。您应该使用(1, 16)
作为维度,将其重塑为(1, -1)
。这将生成一个形状为(1, 16)
的数组,适合您的分类器。
要清楚,请尝试将代码更改为:
example = np.array([7,4,3,2,4,5,3,6,7,4,2,3,5,6,8,4])
example = example.reshape(1, -1)
prediction = clf.predict(example)
print(prediction) # shouldn't error anymore
答案 1 :(得分:0)
我隔离了单独的命令行,它是xxxx.predict(示例)问题而不是X.reshape(x,x)-----输入错误或.reshape(x,x)
答案 2 :(得分:0)
另外,代替:
example = example.reshape(1,-1),
另一种方法是:
example = example[np.newaxis, :]