在RK4算法中使用lambda函数

时间:2017-01-04 18:30:20

标签: python performance optimization runge-kutta

在Python中实现经典Runge-Kutta方案的方法有两种:here。第一个使用lambda函数,第二个没有它们。

哪一个会更快,为什么会更快?

3 个答案:

答案 0 :(得分:4)

我调整了给定链接中的代码,并使用cProfile来比较两种技术:

import numpy as np
import cProfile as cP

def theory(t):
    return (t**2 + 4.)**2 / 16.

def f(x, y):
    return x * np.sqrt(y)

def RK4(f):
    return lambda t, y, dt: (
            lambda dy1: (
            lambda dy2: (
            lambda dy3: (
            lambda dy4: (dy1 + 2*dy2 + 2*dy3 + dy4)/6
                      )( dt * f( t + dt  , y + dy3   ) )
                      )( dt * f( t + dt/2, y + dy2/2 ) )
                      )( dt * f( t + dt/2, y + dy1/2 ) )
                      )( dt * f( t       , y         ) )


def test_RK4(dy=f, x0=0., y0=1., x1=10, n=10):
    vx = np.empty(n+1)
    vy = np.empty(n+1)
    dy = RK4(f=dy)
    dx = (x1 - x0) / float(n)
    vx[0] = x = x0
    vy[0] = y = y0
    i = 1
    while i <= n:
        vx[i], vy[i] = x + dx, y + dy(x, y, dx)
        x, y = vx[i], vy[i]
        i += 1
    return vx, vy


def rk4_step(dy, x, y, dx):
    k1 = dx * dy(x, y)
    k2 = dx * dy(x + 0.5 * dx, y + 0.5 * k1)
    k3 = dx * dy(x + 0.5 * dx, y + 0.5 * k2)
    k4 = dx * dy(x + dx, y + k3)
    return x + dx, y + (k1 + k2 + k2 + k3 + k3 + k4) / 6.


def test_rk4(dy=f, x0=0., y0=1., x1=10, n=10):
    vx = np.empty(n+1)
    vy = np.empty(n+1)
    dx = (x1 - x0) / float(n)
    vx[0] = x = x0
    vy[0] = y = y0
    i = 1
    while i <= n:
        vx[i], vy[i] = rk4_step(dy=dy, x=x, y=y, dx=dx)
        x, y = vx[i], vy[i]
        i += 1
    return vx, vy

cP.run("test_RK4(n=10000)")
cP.run("test_rk4(n=10000)")

得到了:

         90006 function calls in 0.095 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.095    0.095 <string>:1(<module>)
    40000    0.036    0.000    0.036    0.000 untitled1.py:13(f)
        1    0.000    0.000    0.000    0.000 untitled1.py:16(RK4)
    10000    0.008    0.000    0.086    0.000 untitled1.py:17(<lambda>)
    10000    0.012    0.000    0.069    0.000 untitled1.py:18(<lambda>)
    10000    0.012    0.000    0.048    0.000 untitled1.py:19(<lambda>)
    10000    0.009    0.000    0.027    0.000 untitled1.py:20(<lambda>)
    10000    0.009    0.000    0.009    0.000 untitled1.py:21(<lambda>)
        1    0.009    0.009    0.095    0.095 untitled1.py:28(test_RK4)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
        2    0.000    0.000    0.000    0.000 {numpy.core.multiarray.empty}


         50005 function calls in 0.064 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.064    0.064 <string>:1(<module>)
    40000    0.032    0.000    0.032    0.000 untitled1.py:13(f)
    10000    0.026    0.000    0.058    0.000 untitled1.py:43(rk4_step)
        1    0.006    0.006    0.064    0.064 untitled1.py:51(test_rk4)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
        2    0.000    0.000    0.000    0.000 {numpy.core.multiarray.empty}

所以我会在&#34; lambda&#34;中说function call overhead。实现使它变慢。

然而要注意,不管怎么说,我似乎已经失去了一些精确度,因为尽管彼此达成一致,结果仍然比示例中的结果更为明显:

>>> vx, vy = test_rk4()
>>> vy
array([   1.        ,    1.56110667,    3.99324757, ...,  288.78174798,
        451.27952013,  675.64427775])
>>> vx, vy = test_RK4()
>>> vy
array([   1.        ,    1.56110667,    3.99324757, ...,  288.78174798,
        451.27952013,  675.64427775])

答案 1 :(得分:3)

如果您使用Coconut转换程序预处理代码,它实现了尾部调用优化,那么它们是完全等效的(与未处理的更快版本一样快),因此您可以使用任何样式对你来说更方便。

# Save berna1111's code as rk4.coco; no modifications necessary.
$ coconut --target 3 rk4.coco & python3 rk4.py
         50007 function calls in 0.055 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.097    0.097 <string>:1(<module>)
    40000    0.038    0.000    0.038    0.000 rk4.py:243(f)
        1    0.000    0.000    0.000    0.000 rk4.py:246(RK4)
    10000    0.007    0.000    0.088    0.000 rk4.py:247(<lambda>)
        1    0.010    0.010    0.097    0.097 rk4.py:250(test_RK4)
        1    0.000    0.000    0.097    0.097 {built-in method builtins.exec}
        2    0.000    0.000    0.000    0.000 {built-in method numpy.core.multiarray.empty}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}


         50006 function calls in 0.057 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.057    0.057 <string>:1(<module>)
    40000    0.030    0.000    0.030    0.000 rk4.py:243(f)
    10000    0.019    0.000    0.049    0.000 rk4.py:265(rk4_step)
        1    0.007    0.007    0.057    0.057 rk4.py:273(test_rk4)
        1    0.000    0.000    0.057    0.057 {built-in method builtins.exec}
        2    0.000    0.000    0.000    0.000 {built-in method numpy.core.multiarray.empty}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

答案 2 :(得分:2)

@ berna1111和@ matt2000都是正确的。由于函数调用,lambda版本会产生额外的开销。尾调用优化将尾调用转换为while循环(即自动将lambda版本转换为while版本),从而消除函数调用开销。

请参阅https://stackoverflow.com/a/13592002/7421639了解为什么Python不会自动执行此优化,您必须使用像Coconut这样的工具来执行预处理过程。