在轴坐标中查找matplotlib图(包括ticklabels)的范围

时间:2017-01-04 11:27:17

标签: python matplotlib

我需要在轴坐标中找到包括其相关艺术家(在这种情况下只是刻度和刻度标签)的绘图范围(如matplotlib transformations tutorial中所定义)。

这样做的背景是我会自动为大量图表创建缩略图(如this SO question中所示),只有当我可以定位缩略图时才会使原始图中的数据模糊不清。

这是我目前的做法:

  1. 创建一些候选矩形进行测试,从原始绘图的右上角开始向左工作,然后在原始绘图的右下角向左移动。
  2. 对于每个候选矩形:
    1. 使用this SO question中的代码将rect的左右手侧(轴坐标)转换为数据坐标,找到矩形将覆盖的x数据切片。
    2. 查找矩形所涵盖的数据切片的最小/最大y值。
    3. 在数据坐标中找到矩形的顶部和底部。
    4. 使用上述方法,确定矩形是否与任何数据重叠。如果没有,请在当前矩形中绘制缩略图,否则继续。
  3. 这种方法的问题在于轴坐标为您提供从(0,0)(轴的左下角)到(1,1)(右上角)的轴的范围,并且不包括刻度线和ticklabels(缩略图没有标题,轴标签,图例或其他艺术家)。

    所有图表都使用相同的字体大小,但图表上有不同长度的刻度标签(例如1.51.2345 * 10^6),尽管这些在绘制插图之前是已知的。有没有办法将字体大小/点转换为轴坐标?或者,也许有一个比上面的更好的方法(边界框?)。

    以下代码实现了上述算法:

    import math
    
    from matplotlib import pyplot, rcParams
    rcParams['xtick.direction'] = 'out'
    rcParams['ytick.direction'] = 'out'
    
    INSET_DEFAULT_WIDTH = 0.35
    INSET_DEFAULT_HEIGHT = 0.25
    INSET_PADDING = 0.05
    INSET_TICK_FONTSIZE = 8
    
    
    def axis_data_transform(axis, xin, yin, inverse=False):
        """Translate between axis and data coordinates.
        If 'inverse' is True, data coordinates are translated to axis coordinates,
        otherwise the transformation is reversed.
        Code by Covich, from: https://stackoverflow.com/questions/29107800/
        """
        xlim, ylim = axis.get_xlim(), axis.get_ylim()
        xdelta, ydelta = xlim[1] - xlim[0], ylim[1] - ylim[0]
        if not inverse:
            xout, yout = xlim[0] + xin * xdelta, ylim[0] + yin * ydelta
        else:
            xdelta2, ydelta2 = xin - xlim[0], yin - ylim[0]
            xout, yout = xdelta2 / xdelta, ydelta2 / ydelta
        return xout, yout
    
    
    def add_inset_to_axis(fig, axis, rect):
        left, bottom, width, height = rect
        def transform(coord):
            return fig.transFigure.inverted().transform(
                axis.transAxes.transform(coord))
        fig_left, fig_bottom = transform((left, bottom))
        fig_width, fig_height = transform([width, height]) - transform([0, 0])
        return fig.add_axes([fig_left, fig_bottom, fig_width, fig_height])
    
    
    def collide_rect((left, bottom, width, height), fig, axis, data):
        # Find the values on the x-axis of left and right edges of the rect.
        x_left_float, _ = axis_data_transform(axis, left, 0, inverse=False)
        x_right_float, _ = axis_data_transform(axis, left + width, 0, inverse=False)
        x_left = int(math.floor(x_left_float))
        x_right = int(math.ceil(x_right_float))
        # Find the highest and lowest y-value in that segment of data.
        minimum_y = min(data[int(x_left):int(x_right)])
        maximum_y = max(data[int(x_left):int(x_right)])
        # Convert the bottom and top of the rect to data coordinates.
        _, inset_top = axis_data_transform(axis, 0, bottom + height, inverse=False)
        _, inset_bottom = axis_data_transform(axis, 0, bottom, inverse=False)
        # Detect collision.
        if ((bottom > 0.5 and maximum_y > inset_bottom) or  # inset at top of chart
               (bottom < 0.5 and minimum_y < inset_top)):   # inset at bottom
            return True
        return False
    
    
    if __name__ == '__main__':
        x_data, y_data = range(0, 100), [-1.0] * 50 + [1.0] * 50  # Square wave.
        y_min, y_max = min(y_data), max(y_data)
        fig = pyplot.figure()
        axis = fig.add_subplot(111)
        axis.set_ylim(y_min - 0.1, y_max + 0.1)
        axis.plot(x_data, y_data)
        # Find a rectangle that does not collide with data. Start top-right
        # and work left, then try bottom-right and work left.
        inset_collides = False
        left_offsets = [x / 10.0 for x in xrange(6)] * 2
        bottom_values = (([1.0 - INSET_DEFAULT_HEIGHT - INSET_PADDING] * (len(left_offsets) / 2))
                         + ([INSET_PADDING * 2] * (len(left_offsets) / 2)))
        for left_offset, bottom in zip(left_offsets, bottom_values):
            # rect: (left, bottom, width, height)
            rect = (1.0 - INSET_DEFAULT_WIDTH - left_offset - INSET_PADDING,
                    bottom, INSET_DEFAULT_WIDTH, INSET_DEFAULT_HEIGHT)
            inset_collides = collide_rect(rect, fig, axis, y_data)
            print 'TRYING:', rect, 'RESULT:', inset_collides
            if not inset_collides:
                break
        if not inset_collides:
            inset = add_inset_to_axis(fig, axis, rect)
            inset.set_ylim(axis.get_ylim())
            inset.set_yticks([y_min, y_min + ((y_max - y_min) / 2.0), y_max])
            inset.xaxis.set_tick_params(labelsize=INSET_TICK_FONTSIZE)
            inset.yaxis.set_tick_params(labelsize=INSET_TICK_FONTSIZE)
            inset_xlimit = (0, int(len(y_data) / 100.0 * 2.5)) # First 2.5% of data.
            inset.set_xlim(inset_xlimit[0], inset_xlimit[1], auto=False)
            inset.plot(x_data[inset_xlimit[0]:inset_xlimit[1] + 1],
                       y_data[inset_xlimit[0]:inset_xlimit[1] + 1])
        fig.savefig('so_example.png')
    

    这个的输出是:

    TRYING: (0.6, 0.7, 0.35, 0.25) RESULT: True
    TRYING: (0.5, 0.7, 0.35, 0.25) RESULT: True
    TRYING: (0.4, 0.7, 0.35, 0.25) RESULT: True
    TRYING: (0.30000000000000004, 0.7, 0.35, 0.25) RESULT: True
    TRYING: (0.2, 0.7, 0.35, 0.25) RESULT: True
    TRYING: (0.10000000000000002, 0.7, 0.35, 0.25) RESULT: False
    

    script output

1 个答案:

答案 0 :(得分:4)

我的解决方案似乎没有检测到刻度线,但确实会处理刻度标签,轴标签和图标题。希望它足够了,因为固定的垫值应该可以用来计算刻度线。

使用axes.get_tightbbox获取适合包含标签的轴的矩形。

from matplotlib import tight_layout
renderer = tight_layout.get_renderer(fig)
inset_tight_bbox = inset.get_tightbbox(renderer)

原始矩形设置轴bbox inset.bbox。找到这两个bbox中轴坐标的矩形:

inv_transform = axis.transAxes.inverted() 

xmin, ymin = inv_transform.transform(inset.bbox.min)
xmin_tight, ymin_tight = inv_transform.transform(inset_tight_bbox.min) 

xmax, ymax = inv_transform.transform(inset.bbox.max)
xmax_tight, ymax_tight = inv_transform.transform(inset_tight_bbox.max)

现在为轴本身计算一个新的矩形,这样外部紧密的bbox的大小将减小到旧的轴bbox:

xmin_new = xmin + (xmin - xmin_tight)
ymin_new = ymin + (ymin - ymin_tight)
xmax_new = xmax - (xmax_tight - xmax)
ymax_new = ymax - (ymax_tight - ymax)     

现在,只需切换回图形坐标并重新定位插入轴:

[x_fig,y_fig] = axis_to_figure_transform([xmin_new, ymin_new])
[x2_fig,y2_fig] = axis_to_figure_transform([xmax_new, ymax_new])

inset.set_position ([x_fig, y_fig, x2_fig - x_fig, y2_fig - y_fig])

函数axis_to_figure_transform基于transform的{​​{1}}函数:

add_inset_to_axis

注意:这不适用于def axis_to_figure_transform(coord, axis): return fig.transFigure.inverted().transform( axis.transAxes.transform(coord)) ,至少在我的系统上是这样; fig.show()会导致错误。但是,如果您仅使用tight_layout.get_renderer(fig)而不是以交互方式显示绘图,则它可以正常工作。

最后,通过我的更改和补充,这里是您的完整代码:

savefig()