我想在pyspark数据框中添加一个新列,其中包含特定行中大于0的所有列值的计数。
这是我的演示数据框。
+-----------+----+----+----+----+----+----+
|customer_id|2010|2011|2012|2013|2014|2015|
+-----------+----+----+----+----+----+----+
| 1 | 0 | 4 | 0 | 32 | 0 | 87 |
| 2 | 5 | 5 | 56 | 23 | 0 | 09 |
| 3 | 6 | 6 | 87 | 0 | 45 | 23 |
| 4 | 7 | 0 | 12 | 89 | 78 | 0 |
| 6 | 0 | 0 | 0 | 23 | 45 | 64 |
+-----------+----+----+----+----+----+----+
以上数据框架在一年内由客户访问。我想算一下客户访问了多少年。所以我需要一个 visit_count 列,其中包含年度(2010,2011,2012,2013,2014,2015)的访问次数,其值大于0。
+-----------+----+----+----+----+----+----+-----------+
|customer_id|2010|2011|2012|2013|2014|2015|visit_count|
+-----------+----+----+----+----+----+----+-----------+
| 1 | 0 | 4 | 0 | 32 | 0 | 87 | 3 |
| 2 | 5 | 5 | 56 | 23 | 0 | 09 | 5 |
| 3 | 6 | 6 | 87 | 0 | 45 | 23 | 5 |
| 4 | 7 | 0 | 12 | 89 | 78 | 0 | 4 |
| 6 | 0 | 0 | 0 | 23 | 45 | 64 | 3 |
+-----------+----+----+----+----+----+----+-----------+
如何实现这一目标?
答案 0 :(得分:1)
试试这个:
df.withColumn('visit_count', sum((df[col] > 0).cast('integer') for col in df.columns))