我在带有Ubuntu(python 3.4)的Azure NC24 GPU VM中从CNTK安装了版本2.0.beta7。该机器有4个NVIDIA K80 GPU。构建信息:
Build type: release
Build target: GPU
With 1bit-SGD: yes
With ASGD: yes
Math lib: mkl
CUDA_PATH: /usr/local/cuda-8.0
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local
Build Branch: HEAD
Build SHA1: 8e8b5ff92eff4647be5d41a5a515956907567126
Built by Source/CNTK/buildinfo.h$$0 on bbdadbf3455d
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
我在分布式模式下运行CIFAR示例:
mpiexec -n 4 python TrainResNet_CIFAR10_Distributed.py -n resnet20 -q 32
Finished Epoch [1]: [Training] loss = 1.675002 * 50176, metric = 62.5% * 50176 112.019s (447.9 samples per second)
Finished Epoch [1]: [Training] loss = 1.675002 * 50176, metric = 62.5% * 50176 112.019s (447.9 samples per second)
Finished Epoch [1]: [Training] loss = 1.675002 * 50176, metric = 62.5% * 50176 112.018s (447.9 samples per second)
Finished Epoch [1]: [Training] loss = 1.675002 * 50176, metric = 62.5% * 50176 112.019s (447.9 samples per second)
Finished Epoch [2]: [Training] loss = 1.247423 * 50176, metric = 45.4% * 50176 8.210s (6111.3 samples per second)
Finished Epoch [2]: [Training] loss = 1.247423 * 50176, metric = 45.4% * 50176 8.210s (6111.4 samples per second)
Finished Epoch [2]: [Training] loss = 1.247423 * 50176, metric = 45.4% * 50176 8.210s (6111.8 samples per second)
Finished Epoch [2]: [Training] loss = 1.247423 * 50176, metric = 45.4% * 50176 8.210s (6111.6 samples per second)
...
...
Finished Epoch [160]: [Training] loss = 0.037745 * 49664, metric = 1.2% * 49664 7.883s (6300.4 samples per second)
Finished Epoch [160]: [Training] loss = 0.037745 * 49664, metric = 1.2% * 49664 7.883s (6299.7 samples per second)
Finished Epoch [160]: [Training] loss = 0.037745 * 49664, metric = 1.2% * 49664 7.884s (6299.7 samples per second)
Finished Epoch [160]: [Training] loss = 0.037745 * 49664, metric = 1.2% * 49664 7.884s (6299.2 samples per second)
但是,当我使用1bit SGD运行时,我得到:
mpiexec -n 4 python TrainResNet_CIFAR10_Distributed.py -n resnet20 -q 1 -a 50000
...
Finished Epoch [160]: [Training] loss = 0.059290 * 49664, metric = 2.1% * 49664 10.055s (4939.1 samples per second)
Finished Epoch [160]: [Training] loss = 0.059290 * 49664, metric = 2.1% * 49664 10.056s (4938.9 samples per second)
Finished Epoch [160]: [Training] loss = 0.059290 * 49664, metric = 2.1% * 49664 10.056s (4938.9 samples per second)
Finished Epoch [160]: [Training] loss = 0.059290 * 49664, metric = 2.1% * 49664 10.056s (4938.9 samples per second)
正如here所解释的那样,1bit应该比正常对应物快。任何帮助表示赞赏。
答案 0 :(得分:4)
当GPU之间的通信时间与小批量的计算时间相比时,1位sgd是一种有效的策略。
上面的实验有两个“问题”:你正在训练的模型只有很少的参数(计算不是那么多)而且4个GPU在同一台机器上(沟通并不比说过去的那么糟糕)网络)。 此外,在机器内部CNTK使用NVIDIA nccl,它比1位使用的通用MPI实现更好地优化。 更新:在此时注释默认情况下不使用NCCL。