删除具有左右子树的节点的C-错误中的二进制搜索树

时间:2017-01-02 07:33:51

标签: c binary-search-tree

我差不多完成了二进制搜索树程序。但是,我坚持删除:删除左右子树的节点。左子树中提升了最大的左值。它有时可行,但并不总是以它应有的方式工作。即,如果您将值23,14,31,7,9输入树中并删除23,则出现的值为14 14 7 9.请帮忙!

#include <stdio.h>
#include <stdlib.h>


typedef struct node { 
    int key; 
    struct node* left;
    struct node* right;
}node;

struct node* root= NULL;
int count=0;
void preOrder(node* temp){

    if (temp!=NULL){
        printf("%d ",temp->key);
        preOrder(temp->left);
        preOrder(temp->right);
    }
}
//for printing
void inOrder(node* temp){

        if (temp!=NULL){
           inOrder(temp->left);
           printf("%d ",temp->key);
           inOrder(temp->right);
        }

}
void printPrompt(void){
    int choice=-1;

    do{
        printf("   Enter <1> Inorder <2> Preorder <3> Return to Menu: ");
        scanf("%d", &choice);

        if(choice!=1 && choice!=2 && choice!=3)  printf("   Error: invalid input! \n\n");
        if(choice==1){
           if(root==NULL) printf("\tError: is empty tree\n");
              else {
                   printf("\tInorder:\t ");
                   inOrder(root);
                   printf("\n\n");
              }
        }
        else if (choice==2){
           struct node* temp=root;
           if(root==NULL) printf("\tError: is empty tree\n");
              else {
                   printf("\tPreorder:\t ");
                   preOrder(root);
                   printf("\n\n");
              }
        }


    }while (choice!=3);
    printf("   <Exit print method>\n\n");

}
//printing complete

//both are similar code- one searches and another finds the node
int contains(node* current, int value){
    if(current==NULL) return 0;
    if (value==current->key) {
        return 1;
    }
    else if(value < current->key) return contains(current->left, value);
    else return contains(current->right, value);
}
node* findParent(node* current, int value){
    if (value == current->key) return NULL; //if only one node in BST, then no parent node
    if (value < current->key) {
        if (current->left == NULL) return NULL; //if value not found, return null
        else if (current->left->key == value) return current;
        else return findParent (current->left, value);
    }
    else {
        if (current->right == NULL) return NULL;
        else if (current->right->key== value) return current;
        else return findParent (current->right, value);
    }
}

node* findNode(node* current, int value){
    if (current == NULL) return NULL;
    if (current->key == value) {
        return current;
    }
    else if (value < current->key)  return findNode (current->left, value);
    else return findNode (current->right, value);
}
//

void del(value){
    struct node* nodeToRemove= findNode(root, value);
    if (nodeToRemove == NULL) printf("\tError: node not found in tree\n");
    else {
       struct node* parent = findParent(root, value);
       if (count == 1 ) {
            root= NULL; 
            printf("\tRemoving the only node in BST\n");
       }
       else if (nodeToRemove->left == NULL && nodeToRemove->right == NULL){
            printf("\tRemoving leaf node in BST\n");
            if (nodeToRemove->key < parent->key) parent->left = NULL;
            else parent->right = NULL;
       }
       else if (nodeToRemove->left== NULL && nodeToRemove->right != NULL){
            printf("\tRemoving node with right subtree but no left subtree\n");
            if (nodeToRemove->key < parent->key) {
                parent->left = nodeToRemove->right;
            }
            else parent->right = nodeToRemove->right;
       }
       else if (nodeToRemove->left!= NULL && nodeToRemove->right == NULL){
            printf("\tRemoving node with left subtree but no right subtree\n");
            if (nodeToRemove->key < parent->key) {
                parent->left = nodeToRemove->left;
            }
            else parent->right = nodeToRemove->left;
       }
       else{
            printf("\tRemoving node with both left subtree and right subtree\n");
            struct node* nodeLargestLeft = nodeToRemove -> left;
                while (nodeLargestLeft -> right != NULL) nodeLargestLeft= nodeLargestLeft->right;
            findParent(root, nodeLargestLeft->key)->right=NULL;
            nodeToRemove->key=nodeLargestLeft->key;
       }   
   }

            printf("\tResult: ");
            preOrder(root);
            printf("\n");  
            count= count-1;
}

void deletePrompt(void){
    int value=-1;
    do{
        printf("   Delete key or press -1 to return to menu:  ");
        scanf("%d", &value);
        if(value>0){
           if(root==NULL) printf("\tError: is empty tree\n");
             else del(value);

        }
         else if (value<=0) printf("\tError: key not positive\n");
    }while (value!=-1); 
    printf("   <Exit delete method>\n\n");
}

void searchPrompt(void){
    int value=-1;
    do{
        printf("   Search key or press -1 to return to menu: ");
        scanf("%d", &value);
        if(value>0){
            if (root==NULL) printf("\tError: tree is empty\n"); 
            else {
                if(contains(root, value)) printf("\tKey %d is found\n",value);
                else printf("\tKey %d is not found\n",value);
            }
        }
        else if (value<=0) printf("\tError: key not positive\n");
    }while (value!=-1);
    printf("   <Exit search method>\n\n");
}
//for search




//for insertion
void insertNode(node* current, int value){        
        if(value< current->key){
            if (current->left == NULL) {
                current->left=(node*) malloc(sizeof(node));
                current->left->key = value;
                current->left->left = NULL;
                current->left->right = NULL;
                printf("\tSuccess! Value inserted: %d\n", current->left->key);

            }
            else {
                insertNode(current->left, value);
            }
        }
        else {
            if (current->right == NULL) {
                current->right=(node*) malloc(sizeof(node));
                current->right->key = value;
                current->right->left = NULL;
                current->right->right = NULL;
                printf("\tSuccess! Value inserted: %d\n", current->right->key);
            }
            else {
                insertNode(current->right, value);
            }
        }
}//end insert

void insert(int value){

    if(root==NULL){  //empty tree
        root =(node*) malloc(sizeof(node));

        root->key= value;
        printf("\tPrint root here: %d\n", value);
        root->left= NULL;
        root->right=NULL;
        printf("\tSuccess! Value inserted: %d\n", root->key);
    }
    else {
        insertNode(root, value);
    }        
        printf("\tResult: ");
        preOrder(root);
        printf("\n");
}

void insertPrompt(void){
    int value=-1;
    do{
        printf("   Insert value or press -1 to return to menu:  ");
        scanf("%d", &value);
        if(value>0){
            insert(value);
            count= count+1;
            printf("\tCount: %d\n", count);
        }
        else if (value<=0)printf("\tError: key not positive\n");
    }while (value!=-1);
    printf("   <Exit insert method>\n\n");

}

int menuPrompt(void){
    int choice=-1;
    do{
        printf("Enter <1> Search <2> Insert <3> Delete <4> Print Tree <5> Quit: ");
        scanf("%d", &choice);
        if(choice>5 || choice<1) printf("Error: invalid input! \n\n");
    }  while(choice>5 || choice<1);
    return choice;

}


int main(int argc, char *argv[]){
   int choice=-1;
   int value=-1;


    while(choice!=5){

   choice=menuPrompt();

   switch(choice){
    case 1:
         searchPrompt();
         break;
    case 2:
         insertPrompt();
         break;
    case 3:
         deletePrompt();
         break;
    case 4:
         printPrompt();
         break;    
    case 5:
         printf("<Exit program> \n");
         break;
   }//end switch

}

  system("PAUSE");  
  return 0;
}

3 个答案:

答案 0 :(得分:3)

具有两个子树的节点的删除算法略有错误。你正确的做法是:

找到左子树的最大值(或右子树的最小值):

struct node* nodeLargestLeft = nodeToRemove -> left;
while (nodeLargestLeft -> right != NULL)
    nodeLargestLeft= nodeLargestLeft->right;
  • 使用上面

    中找到的节点的值替换要删除的节点的值

    nodeToRemove-&GT;键= nodeLargestLeft-&GT;密钥;

您尝试从示例树中删除23

      23
     /  \
   14    31
  /
 7
  \ 
   9

在左子树中有14个最大值,现在看起来像这样:

      14
     /  \
   14    31
  /
 7
  \ 
   9

但是现在,您不能只删除最大节点(您的根节点)的父节点的右子树。在你提到的示例中,这将是整个二叉树的正确子树!

findParent(root, nodeLargestLeft->key)->right=NULL; // wrong

相反,您必须为重复节点(第二级中的节点14)执行常规删除过程。由于它是左子树中具有最大值的节点,因此它不能具有正确的子树。所以只有两种情况:左边的子树也是空的,在这种情况下可以丢弃节点,或者填充它,在这种情况下,左子树的根节点替换这个节点。

在你的例子中,第二种情况发生了,你的树应该是这样的:

      14
     /  \
    7    31
     \ 
      9

通过最少的侵入性更改,此过程应该有效:

printf("\tRemoving node with both left subtree and right subtree\n");
struct node* nodeLargestLeft = nodeToRemove->left;
parent = findParent(root, nodeLargestLeft->key);
while (nodeLargestLeft -> right != NULL) {
    parent = nodeLargestLeft;
    nodeLargestLeft= nodeLargestLeft->right;
}
nodeToRemove->key=nodeLargestLeft->key;
parent->left = nodeLargestLeft->left;

您的代码还有其他一些问题,例如

  • 删除仅包含左子树或右子树的根节点时,parentNULL - 指针,导致parent->key上的段错误
  • 重复处理不一致
  • 许多代码路径可以合并为一个代码路径,从而消除冗余并增强代码可读性
  • findParent的调用看起来很难看,在遍历树或为每个节点维护父指针时更好地跟踪父级。

答案 1 :(得分:0)

好的,我解决了自己的问题。有一个特例。

 else{
            printf("\tRemoving node with both left subtree and right subtree\n");
            //special case, if left of nodeToRemove has no right node
            struct node* nodeLargestLeft = nodeToRemove -> left;
            if (nodeToRemove->left->right == NULL) {
                nodeToRemove->key = nodeToRemove->left ->key;
                nodeToRemove->left = nodeToRemove->left->left;

            }else{
                while (nodeLargestLeft -> right != NULL) nodeLargestLeft= nodeLargestLeft->right;
                findParent(root, nodeLargestLeft->key)->right=NULL;
                nodeToRemove->key=nodeLargestLeft->key;
            }
       }   

答案 2 :(得分:0)

DELETION是b-tree中最不正常的例程,这是我的, 这是维基文章,它恢复了我所做的https://en.wikipedia.org/wiki/Binary_search_tree#Deletion

void  bt_rec_delete(pbbtree bt, size_t root)
{
    ptbBtreeNode me, right, left, parent, replacer;
    char side;
    ll rec;
    me = &bt->tb[root];
    me->deleted = TRUE;
    right = me->right == 0 ? NULL : &bt->tb[me->right];
    left = me->left == 0 ? NULL : &bt->tb[me->left];
    parent = me->parent == 0 ? NULL : &bt->tb[me->parent];
    //     if (parent)
    //          disp_dbt(bt,parent->index,0);
    if (parent)
        side = parent->right == root ? 'r' : 'l';
    else
        side = 0;

    if (!right && !left)
    {
        if (side == 'r')
            parent->right = 0;
        else if (side == 'l')
            parent->left = 0;
        else
            bt->current_root = 0;
        propagate_depth(bt, root);
    }
    else if (!right)
    {
        left->parent = me->parent;
        if (side == 'r')
            parent->right = left->index;
        else if (side == 'l')
            parent->left = left->index;
        else
            bt->current_root = left->index;
        propagate_depth(bt, left->index);
    }
    else if (!left)
    {
        right->parent = me->parent;
        if (side == 'r')
            parent->right = right->index;
        else if (side == 'l')
            parent->left = right->index;
        else
            bt->current_root = right->index;
        propagate_depth(bt, right->index);
    }
    else
    {
        unsigned rec_par;
        if (right->depth > left->depth)
        {
            rec = bt_get_maximum(bt, right->index);
            assert(rec > 0);
            rec_par = bt->tb[rec].parent;

            if (rec_par != me->index)
            {
                bt->tb[rec_par].left = bt->tb[rec].right; // maximum assure me there is no left leaf
                if (bt->tb[rec].right > 0)
                    bt->tb[bt->tb[rec].right].parent = rec_par;
                bt->tb[rec].right = 0;
            }
            propagate_depth(bt, rec_par);
        }
        else
        {
            rec = bt_get_minimum(bt, left->index);
            assert(rec > 0);
            rec_par = bt->tb[rec].parent;

            if (rec_par != me->index)
            {
                bt->tb[rec_par].right = bt->tb[rec].left;// minimum assure me there is no right leaf
                if (bt->tb[rec].left > 0)
                    bt->tb[bt->tb[rec].left].parent = rec_par;
                bt->tb[rec].left = 0;
            }

            propagate_depth(bt, rec_par);
        }
        replacer = &bt->tb[rec];
        replacer->depth = me->depth;
        if (side == 'r')
            parent->right = replacer->index;
        else if (side == 'l')
            parent->left = replacer->index;
        else
            bt->current_root = replacer->index;
        replacer->parent = me->parent;
        if (replacer->index != left->index)
        {
            replacer->left = left->index;
            left->parent = replacer->index;
        }
        if (replacer->index != right->index)
        {
            replacer->right = right->index;
            right->parent = replacer->index;
        }

    }

}