Postgres:获取最大值和最小值以及它们发生的时间戳

时间:2017-01-01 12:12:48

标签: postgresql aggregate-functions greatest-n-per-group postgresql-9.2

我正在运行Postgres 9.2,并有一张温度和时间戳表,每分钟一个时间戳,以毫秒为单位时间:

weather=# \d weather_data
      Table "public.weather_data"
   Column    |     Type     | Modifiers 
-------------+--------------+-----------
 timestamp   | bigint       | not null
 sensor_id   | integer      | not null
 temperature | numeric(4,1) | 
 humidity    | integer      | 
 date        | date         | not null
Indexes:
    "weather_data_pkey" PRIMARY KEY, btree ("timestamp", sensor_id)
    "weather_data_date_idx" btree (date)
    "weather_data_humidity_idx" btree (humidity)
    "weather_data_sensor_id_idx" btree (sensor_id)
    "weather_data_temperature_idx" btree (temperature)
    "weather_data_time_idx" btree ("timestamp")
Foreign-key constraints:
    "weather_data_sensor_id_fkey" FOREIGN KEY (sensor_id) REFERENCES weather_sensors(sensor_id)

weather=# select * from weather_data order by timestamp desc;
   timestamp   | sensor_id | temperature | humidity |    date    
---------------+-----------+-------------+----------+------------
 1483272420000 |         2 |        22.3 |       57 | 2017-01-01
 1483272420000 |         1 |        24.9 |       53 | 2017-01-01
 1483272360000 |         2 |        22.3 |       57 | 2017-01-01
 1483272360000 |         1 |        24.9 |       58 | 2017-01-01
 1483272300000 |         2 |        22.4 |       57 | 2017-01-01
 1483272300000 |         1 |        24.9 |       57 | 2017-01-01
[...]

我现有的查询可以获取每天的高点和低点,但不会出现高或低的特定时间:

WITH t AS (
    SELECT date, highest, lowest
    FROM (
        SELECT date, max(temperature) AS highest
        FROM weather_data
        WHERE sensor_id = (SELECT sensor_id FROM weather_sensors WHERE sensor_name = 'outdoor')
        GROUP BY date
        ORDER BY date ASC
    ) h
    INNER JOIN (
        SELECT date, min(temperature) AS lowest
        FROM weather_data
        WHERE sensor_id = (SELECT sensor_id FROM weather_sensors WHERE sensor_name = 'outdoor')
        GROUP BY date
        ORDER BY date ASC
    ) l
    USING (date)
    ORDER BY date DESC
)
SELECT * from t ORDER BY date ASC;

数据库中有两百多万行,运行大约需要1.2秒,这并不算太糟糕。我想现在得到高或低的特定时间,我想出了这个使用窗口函数, 工作但需要约5.6秒:

SELECT h.date, high_time, high_temp, low_time, low_temp FROM (
    SELECT date, high_temp, high_time FROM (
        SELECT date, temperature AS high_temp, timestamp AS high_time, row_number()
        OVER (PARTITION BY date ORDER BY temperature DESC, timestamp DESC)
        FROM weather_data
        WHERE sensor_id = (SELECT sensor_id FROM weather_sensors WHERE sensor_name = 'outdoor')
    ) highs
    WHERE row_number = 1
) h
INNER JOIN (
    SELECT * FROM (
        SELECT date, temperature AS low_temp, timestamp AS low_time, row_number()
        OVER (PARTITION BY date ORDER BY temperature ASC, timestamp DESC)
        FROM weather_data
        WHERE sensor_id = (SELECT sensor_id FROM weather_sensors WHERE sensor_name = 'outdoor')
    ) lows
    WHERE row_number = 1
) l
ON h.date = l.date
ORDER BY h.date ASC;

我可以制作的第一个查询是否有一些相对简单的补充,它不会增加大量的执行时间?我认为有,但我想我已经在这个问题上看了太久了!

2 个答案:

答案 0 :(得分:2)

这与您的第二个查询相同,但只需要对weather_data表进行一次扫描:

select date, 
       max(case when high_rn = 1 then timestamp end) as high_time, 
       max(case when high_rn = 1 then temperature end) as high_temp, 
       max(case when low_rn = 1 then timestamp end) as low_time, 
       max(case when low_rn = 1 then temperature end) as low_temp
from (
  select timestamp, temperature, date, 
         row_number() OVER (PARTITION BY date ORDER BY temperature DESC, timestamp DESC) as high_rn,
         row_number() OVER (PARTITION BY date ORDER BY temperature ASC, timestamp DESC) as low_rn
  from weather_data
  where sensor_id = ...
) t
where (high_rn = 1 or low_rn = 1)
group by date;   

它使用条件聚合对仅包含最小和最大温度的结果执行交叉表(a.k.a。" pivot")查询。

无关,但是:datetimestamp是列的可怕名称。一个是因为它们是关键字,但更重要的是因为它们没有记录列的实际含义。这是"截止日期"? A"阅读日期"? A"处理日期"?

答案 1 :(得分:2)

SELECT  
        DISTINCT ON (zdate) zdate
        , first_value(ztimestamp) OVER www AS stamp_at_min
        , first_value(temperature) OVER www AS tmin
        , last_value(ztimestamp) OVER www AS stamp_at_max
        , last_value(temperature) OVER www AS tmax
FROM weather_data
WHERE sensor_id = 2
WINDOW www AS (PARTITION BY zdate ORDER BY temperature, ztimestamp
                ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
                )
        ;
  • 前缀 z 日期和 z 时间戳
  • 我将ztimestamp添加到订单作为打破平局