我目前有代码,我通过多个.withColumn链重复将相同的过程应用于多个DataFrame列,并且我想创建一个简化过程的函数。就我而言,我发现了按键聚合的列的累积总和:
val newDF = oldDF
.withColumn("cumA", sum("A").over(Window.partitionBy("ID").orderBy("time")))
.withColumn("cumB", sum("B").over(Window.partitionBy("ID").orderBy("time")))
.withColumn("cumC", sum("C").over(Window.partitionBy("ID").orderBy("time")))
//.withColumn(...)
我想要的是:
def createCumulativeColums(cols: Array[String], df: DataFrame): DataFrame = {
// Implement the above cumulative sums, partitioning, and ordering
}
或更好:
def withColumns(cols: Array[String], df: DataFrame, f: function): DataFrame = {
// Implement a udf/arbitrary function on all the specified columns
}
答案 0 :(得分:26)
您可以将select
与varargs一起使用,包括*
:
import spark.implicits._
df.select($"*" +: Seq("A", "B", "C").map(c =>
sum(c).over(Window.partitionBy("ID").orderBy("time")).alias(s"cum$c")
): _*)
此:
Seq("A", ...).map(...)
$"*" +: ...
。... : _*
可以概括为:
import org.apache.spark.sql.{Column, DataFrame}
/**
* @param cols a sequence of columns to transform
* @param df an input DataFrame
* @param f a function to be applied on each col in cols
*/
def withColumns(cols: Seq[String], df: DataFrame, f: String => Column) =
df.select($"*" +: cols.map(c => f(c)): _*)
如果您发现withColumn
语法更具可读性,则可以使用foldLeft
:
Seq("A", "B", "C").foldLeft(df)((df, c) =>
df.withColumn(s"cum$c", sum(c).over(Window.partitionBy("ID").orderBy("time")))
)
可以概括为例如:
/**
* @param cols a sequence of columns to transform
* @param df an input DataFrame
* @param f a function to be applied on each col in cols
* @param name a function mapping from input to output name.
*/
def withColumns(cols: Seq[String], df: DataFrame,
f: String => Column, name: String => String = identity) =
cols.foldLeft(df)((df, c) => df.withColumn(name(c), f(c)))
答案 1 :(得分:4)
这个问题有点陈旧,但我认为(使用DataFrame
作为累加器并通过DataFrame
映射折叠列列表会很有用(可能对其他人而言)当列数不是微不足道时,性能结果会有很大差异(有关完整说明,请参阅here)。
长话短说......对于少数列foldLeft
很好,否则map
会更好。
答案 2 :(得分:0)
在 PySpark 中:
from pyspark.sql import Window
import pyspark.sql.functions as F
window = Window.partitionBy("ID").orderBy("time")
df.select(
"*", # selects all existing columns
*[
F.sum(col).over(windowval).alias(col_name)
for col, col_name in zip(["A", "B", "C"], ["cumA", "cumB", "cumC"])
]
)