我为对称的无向图实现Floyd-Warshall算法。目前,我已计算出每个连接点的最佳路径。我的问题是我想保存收取累积重量的索引点,以便以后能够写出路线上的点名。我想将它们保存到列表中,但我不知道哪些索引应写入函数addDrawPointsToList(int a,int b,int [] [] M)。 a和b是我想要保存航路点的点
代码:
public class FloydWarshallAlg {
static int[][] P;
static List<Integer> lista;
static final int N = 43;
static final int X = 999;
public static void main(String[] args) {
int M[][] = new int[][]{
{0, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{1, 0, 1, X, X, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, 1, 0, 1, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, 1, X, 0, X, 1, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, 1, 1, X, X, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, 1, X, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, 1, X, X, 0, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, 1, X, X, 1, 0, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, 1, 0, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, 1, X, 0, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, 1, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, X, 0, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, 1, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, X, X, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, X, 0, 1, 1, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, 1, 1, X, X, 1, 1, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, 1, 1, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, X, X, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, X, X, X, 0, 1, X, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, X, X, X, 1, 0, 1, X, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, 1, 1, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X, X, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0, 1, 1},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, 0, X},
{X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 1, X, 0}};
lista = new ArrayList<Integer>();
System.out.println("Main Matrix.");
printMatrix(M);
System.out.println("Shortest Path Matrix.");
printMatrix(FloydAlgo(M));
addDrawPointsToList(3, 12);
printList(lista);
}
public static List addDrawPointsToList(int a, int b, int[][] M) {
return lista;
}
public static int[][] FloydAlgo(int[][] M) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
for (int k = 0; k < N; k++) {
// to keep track.;
if (M[j][i] + M[i][k] < M[j][k]) {
M[j][k] = M[j][i] + M[i][k];
}
}
}
}
return M;
}
public static void printMatrix(int[][] Matrix) {
System.out.print("\n\t");
for (int j = 0; j < N; j++) {
System.out.print(j + "\t");
}
System.out.println();
for (int j = 0; j < 347; j++) {
System.out.print("-");
}
System.out.println();
for (int i = 0; i < N; i++) {
System.out.print(i + " |\t");
for (int j = 0; j < N; j++) {
if (Matrix[i][j] == 999) {
System.out.print("X");
} else {
System.out.print(Matrix[i][j]);
}
System.out.print("\t");
}
System.out.println("");
}
System.out.println("\n");
}
public static void printIntArray(int A[]) {
for (int i = 0; i < N; i++) {
System.out.print(A[i] + " ");
}
}
public static void printList(List L) {
for (int i = 0; i < L.size(); i++) {
System.out.print(L.get(i) + ", ");
}
System.out.println("\nList size: " + L.size());
}}
我觉得这可能是一个需要解决的小问题,但我是一名新手程序员而且我没有看到解决方案。我会很感激任何建议。 为我的英语而烦恼;&lt;
答案 0 :(得分:0)
我不知道addDrawPointsToList
应该做什么,但一般来说,如果你想从Floyd-Warshall中检索路径,你必须记住你在{{{ 1}}步骤。
如果i-th
,那么使用节点M[j][i] + M[i][k] < M[j][k]
从j
到k
的最短路径将经过1, ..., i
。因此,最短路径可以在从i
到j
的最短路径和从i
到j
的最短路径中分解。让k
成为这个中间节点。
A[j][k]
然后获取从if (M[j][i] + M[i][k] < M[j][k]) {
A[j][k] = i;
M[j][k] = M[j][i] + M[i][k];
}
到i
的路径:
k
这是主要的想法,现在你可以编写Java代码来模拟这个。