如何将摘要添加到tensorboard

时间:2016-12-29 06:18:44

标签: python tensorflow deep-learning tensorboard

我正在使用tensorflow进行DNN,并希望用tensorboard将其可视化。它是一个三层隐藏层网络。这是代码 -

def dnn_model(data, keep_prob, n_classes=10, n_h1 =100, n_h2=100, n_h3=100 ):

    with tf.name_scope('hidden1'):
        weights = tf.Variable(tf.random_normal([784, n_h1]), name='weights')
        biases =  tf.Variable(tf.random_normal([n_h1]), name = 'biases')
        l1 = tf.add(tf.matmul(data, weights), biases)
        l1 = tf.nn.relu(l1)
        l1 = tf.nn.dropout(l1, keep_prob)
        tf.histogram_summary('l1_weights', weights)
        tf.histogram_summary('l1_biases', biases)

    with tf.name_scope('hidden2'):
        weights = tf.Variable(tf.random_normal([n_h1, n_h2]), name='weights')
        biases =  tf.Variable(tf.random_normal([n_h2]), name = 'biases')
        l2 = tf.add(tf.matmul(l1, weights), biases)
        l2 = tf.nn.relu(l2)
        l2 = tf.nn.dropout(l2, keep_prob)
        tf.histogram_summary('l2_weights', weights)
        tf.histogram_summary('l2_biases', biases)

    with tf.name_scope('hidden3'):
        weights = tf.Variable(tf.random_normal([n_h2, n_h3]), name='weights')
        biases =  tf.Variable(tf.random_normal([n_h3]), name = 'biases')
        l3 = tf.add(tf.matmul(l2, weights), biases)
        l3 = tf.nn.relu(l3)
        l3 = tf.nn.dropout(l3, keep_prob)
        tf.histogram_summary('l3_weights', weights)
        tf.histogram_summary('l3_biases', biases)

    with tf.name_scope('output'):
        weights = tf.Variable(tf.random_normal([n_h3, n_classes]), name='weights')
        biases =  tf.Variable(tf.random_normal([n_classes]), name='biases')
        outputs = tf.matmul(l3, weights)+ biases
        tf.histogram_summary('outputs', outputs)


    print ('DNN architecture:')
    print ('hidden layer one:  %d \nhidden layer two:  %d \nhidden layer three:  %d'%(n_h1, n_h2, n_h3))
    print ('output layer:', n_classes )

    return (outputs)


def dnn_train(trX, trY, tsX, tsY,  n_epochs=10, batch_size=128, keep_rate=1):

    with tf.name_scope('input'):
        x = tf.placeholder('float', [None, 784])
        y = tf.placeholder ('float', [None, 10])
        keep_prob = tf.placeholder(tf.float32)

    prediction = dnn_model(x, keep_prob=keep_prob)

    with tf.name_scope('cost'):
        cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction,y))
        tf.scalar_summary ('cost', cost)

    with tf.name_scope('train'):
        optimizer = tf.train.AdamOptimizer().minimize(cost)   

    n_epochs = n_epochs

    with tf.Session() as sess:


        merged = tf.merge_all_summaries()
        writer = tf.train.SummaryWriter("logs/", sess.graph)

        sess.run(tf.initialize_all_variables())

        for epoch in range(n_epochs):
            epoch_loss = 0
            for start, end in zip(range(0, len(trX), batch_size), range(batch_size, len(trX)+1, batch_size)):
                _, c = sess.run([optimizer, cost], feed_dict={x: trX[start:end], y: trY[start:end], keep_prob: keep_rate})
                epoch_loss += c

            if epoch % 2 ==0:
                print('Epoch', epoch, 'completed out of ', n_epochs, 'loss', epoch_loss)
                result = sess.run(merged, feed_dict={x: trX[start:end], y: trY[start:end], keep_prob: keep_rate})
                writer.add_summary (result, epoch)

        correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))

        print ('dropout keep_rate:', keep_rate)
        print ('Accuracy:', accuracy.eval({x: tsX, y: tsY, keep_prob: keep_rate}))

## load data and train model
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
X_train, y_train = mnist.train.images, mnist.train.labels
X_test, y_test = mnist.test.images, mnist.test.labels

dnn_train(X_train, y_train, X_test, y_test, n_epochs = 10, keep_rate=0.99)

代码给了我一个非常令人困惑的错误消息。 但是,当我注释掉这两行(第5行和第6行到最后一行)时,程序可以工作。只是张量板只显示图表,没有事件和摘要。

result = sess.run(merged, feed_dict={x: trX[start:end], y: trY[start:end],   keep_prob: keep_rate})
writer.add_summary (result, epoch)

我花了很长时间试图解决这个问题。我做错了什么? 非常感谢帮助!非常感谢。

以下是我收到的错误消息。

    DNN architecture:
hidden layer one:  100 
hidden layer two:  100 
hidden layer three:  100
output layer: 10
Epoch 0 completed out of  10 loss 73920328.1035
---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
    971     try:
--> 972       return fn(*args)
    973     except errors.OpError as e:

/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
    953                                  feed_dict, fetch_list, target_list,
--> 954                                  status, run_metadata)
    955 

/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/contextlib.py in __exit__(self, type, value, traceback)
     65             try:
---> 66                 next(self.gen)
     67             except StopIteration:

/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/errors.py in raise_exception_on_not_ok_status()
    462           compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 463           pywrap_tensorflow.TF_GetCode(status))
    464   finally:

InvalidArgumentError: You must feed a value for placeholder tensor 'input_2/Placeholder' with dtype float
     [[Node: input_2/Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

During handling of the above exception, another exception occurred:

InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-49-71e47968c9c9> in <module>()
----> 1 dnn_train(X_train, y_train, X_test, y_test, n_epochs = 10, keep_rate=0.99)

<ipython-input-48-c1c50872bea4> in dnn_train(trX, trY, tsX, tsY, n_epochs, batch_size, keep_rate)
     33             if epoch % 2 ==0:
     34                 print('Epoch', epoch, 'completed out of ', n_epochs, 'loss', epoch_loss)
---> 35                 result = sess.run(merged, feed_dict={x: trX[start:end], y: trY[start:end], keep_prob: keep_rate})
     36                 writer.add_summary (result, epoch)
     37 

/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
    715     try:
    716       result = self._run(None, fetches, feed_dict, options_ptr,
--> 717                          run_metadata_ptr)
    718       if run_metadata:
    719         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    913     if final_fetches or final_targets:
    914       results = self._do_run(handle, final_targets, final_fetches,
--> 915                              feed_dict_string, options, run_metadata)
    916     else:
    917       results = []

/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
    963     if handle is None:
    964       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
--> 965                            target_list, options, run_metadata)
    966     else:
    967       return self._do_call(_prun_fn, self._session, handle, feed_dict,

/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
    983         except KeyError:
    984           pass
--> 985       raise type(e)(node_def, op, message)
    986 
    987   def _extend_graph(self):

InvalidArgumentError: You must feed a value for placeholder tensor 'input_2/Placeholder' with dtype float
     [[Node: input_2/Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

Caused by op 'input_2/Placeholder', defined at:
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/runpy.py", line 184, in _run_module_as_main
    "__main__", mod_spec)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/ipykernel/__main__.py", line 3, in <module>
    app.launch_new_instance()
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/traitlets/config/application.py", line 653, in launch_instance
    app.start()
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelapp.py", line 474, in start
    ioloop.IOLoop.instance().start()
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/ioloop.py", line 162, in start
    super(ZMQIOLoop, self).start()
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tornado/ioloop.py", line 887, in start
    handler_func(fd_obj, events)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tornado/stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events
    self._handle_recv()
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv
    self._run_callback(callback, msg)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback
    callback(*args, **kwargs)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tornado/stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 276, in dispatcher
    return self.dispatch_shell(stream, msg)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 228, in dispatch_shell
    handler(stream, idents, msg)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 390, in execute_request
    user_expressions, allow_stdin)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/ipykernel/ipkernel.py", line 196, in do_execute
    res = shell.run_cell(code, store_history=store_history, silent=silent)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/ipykernel/zmqshell.py", line 501, in run_cell
    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
    interactivity=interactivity, compiler=compiler, result=result)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2827, in run_ast_nodes
    if self.run_code(code, result):
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-14-71e47968c9c9>", line 1, in <module>
    dnn_train(X_train, y_train, X_test, y_test, n_epochs = 10, keep_rate=0.99)
  File "<ipython-input-13-636b5fd33c4d>", line 4, in dnn_train
    x = tf.placeholder('float', [None, 784])
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py", line 1332, in placeholder
    name=name)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1748, in _placeholder
    name=name)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py", line 749, in apply_op
    op_def=op_def)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2380, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/Users/tiger/anaconda/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1298, in __init__
    self._traceback = _extract_stack()

InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'input_2/Placeholder' with dtype float
     [[Node: input_2/Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

0 个答案:

没有答案