TrieNode和Trie对象:
struct TrieNode {
char nodeChar = NULL;
map<char, TrieNode> children;
TrieNode() {}
TrieNode(char c) { nodeChar = c; }
};
struct Trie {
TrieNode *root = new TrieNode();
typedef pair<char, TrieNode> letter;
typedef map<char, TrieNode>::iterator it;
Trie(vector<string> dictionary) {
for (int i = 0; i < dictionary.size(); i++) {
insert(dictionary[i]);
}
}
void insert(string toInsert) {
TrieNode * curr = root;
int increment = 0;
// while letters still exist within the trie traverse through the trie
while (curr->children.find(toInsert[increment]) != curr->children.end()) { //letter found
curr = &(curr->children.find(toInsert[increment])->second);
increment++;
}
//when it doesn't exist we know that this will be a new branch
for (int i = increment; i < toInsert.length(); i++) {
TrieNode temp(toInsert[i]);
curr->children.insert(letter(toInsert[i], temp));
curr = &(curr->children.find(toInsert[i])->second);
if (i == toInsert.length() - 1) {
temp.nodeChar = NULL;
curr->children.insert(letter(NULL, temp));
}
}
}
vector<string> findPre(string pre) {
vector<string> list;
TrieNode * curr = root;
/*First find if the pre actually exist*/
for (int i = 0; i < pre.length(); i++) {
if (curr->children.find(pre[i]) == curr->children.end()) { //DNE
return list;
}
else {
curr = &(curr->children.find(pre[i])->second);
}
}
/*Now curr is at the end of the prefix, now we will perform a DFS*/
pre = pre.substr(0, pre.length() - 1);
findPre(list, curr, pre);
}
void findPre(vector<string> &list, TrieNode *curr, string prefix) {
if (curr->nodeChar == NULL) {
list.push_back(prefix);
return;
}
else {
prefix += curr->nodeChar;
for (it i = curr->children.begin(); i != curr->children.end(); i++) {
findPre(list, &i->second, prefix);
}
}
}
};
问题在于这个功能:
void findPre(vector<string> &list, TrieNode *curr, string prefix) {
/*if children of TrieNode contains NULL char, it means this branch up to this point is a complete word*/
if (curr->nodeChar == NULL) {
list.push_back(prefix);
}
else {
prefix += curr->nodeChar;
for (it i = curr->children.begin(); i != curr->children.end(); i++) {
findPre(list, &i->second, prefix);
}
}
}
目的是使用DFS从trie返回所有具有相同前缀的单词。我设法检索所有必要的字符串,但我不能退出递归。
代码完成if语句的最后一次迭代并中断。 Visual Studio不会返回任何错误代码。
答案 0 :(得分:2)
递归的典型结束就像你说的那样 - return
所有单词。标准递归看起来像这样:
returnType function(params...){
//Do stuff
if(need to recurse){
return function(next params...);
}else{ //This should be your defined base-case
return base-case;
}
问题在于你的递归函数永远不会返回 - 它既可以执行push_back
,也可以再次调用自身。这些似乎都没有正确退出,所以它要么安静地结束(推断没有返回),要么它会继续递归。
在您的情况下,您可能需要将递归结果存储在类似列表等的中间结构中,然后在迭代后返回该列表(因为它是树搜索并且应该检查所有子项,而不是返回只有第一个)
就这一点而言,你似乎错过了递归点的一部分 - 它们的存在是为了填补一个目的:将问题分解成碎片,直到这些碎片无法解决。然后返回该案例并构建回完整的解决方案。任何树木搜索都必须来自这个基础结构,否则您可能会遗漏某些内容,例如忘记return
您的结果。
答案 1 :(得分:1)
检查Trie结构的完整性。该功能似乎是正确的。它不会终止的原因是你的一个或多个叶子节点没有curr-> nodeChar == NULL。
另一种情况是任何节点(叶子或非叶子)都有一个垃圾子节点。这将导致递归破坏读取垃圾值而没有理由停止。在调试模式下运行应该会因分段错误而中断执行。
编写另一个函数来测试所有叶节点是否都有NULL终止。
编辑:
发布代码后,原始海报已经指出问题在于他/她没有返回字符串列表。
除此之外,我还想根据代码提供更多建议:
如果toInsert
字符串已经在Trie中,这个while循环如何终止。
您将超出toInsert
字符串并读取垃圾字符。
它会在此之后退出,但超出字符串读取是一种糟糕的编程方式。
// while letters still exist within the trie traverse through the trie
while (curr->children.find(toInsert[increment]) != curr->children.end())
{ //letter found
curr = &(curr->children.find(toInsert[increment])->second);
increment++;
}
这可以写成如下:
while (increment < toInsert.length() &&
curr->children.find(toInsert[increment]) != curr->children.end())
此外,
Trie( vector<string> dictionary)
应该是
Trie( const vector<string>& dictionary )
因为字典可以是一个大对象。如果您没有通过引用传递,它将创建第二个副本。这效率不高。
答案 2 :(得分:0)
> dput(gdd10csum)
structure(list(Date = structure(c(16941, 16941, 16941, 16941,
16941, 16941, 16941, 16941, 16941, 16941, 16941, 16942, 16941,
16941, 16941, 16941, 16942, 16942, 16941, 16942, 16942, 16942,
16942, 16941, 16941, 16942, 16942, 16941, 16942, 16941, 16941,
16941, 16941, 16942, 16941, 16942, 16942, 16942, 16941, 16941,
16941, 16942, 16941, 16941, 16941, 16941, 16941, 16942, 16942,
16942, 16942, 16942, 16942, 16942, 16942, 16942, 16942, 16942,
16942, 16942, 16942, 16942, 16942, 16942), class = "Date"), Treatment = structure(c(2L,
1L, 5L, 3L, 1L, 5L, 2L, 3L, 5L, 5L, 4L, 2L, 4L, 3L, 4L, 4L, 1L,
5L, 2L, 5L, 3L, 1L, 2L, 2L, 2L, 5L, 3L, 1L, 5L, 5L, 1L, 5L, 1L,
4L, 3L, 4L, 3L, 4L, 3L, 1L, 4L, 4L, 5L, 3L, 3L, 4L, 4L, 2L, 2L,
2L, 1L, 5L, 1L, 5L, 1L, 3L, 3L, 4L, 1L, 5L, 3L, 3L, 4L, 4L), .Label = c("Disc",
"Strip_NT", "Strip_ST", "Vt_high", "Vt_low"), class = "factor"),
Rep = structure(c(2L, 1L, 1L, 2L, 2L, 4L, 1L, 3L, 2L, 3L,
4L, 2L, 1L, 1L, 2L, 3L, 1L, 1L, 2L, 4L, 2L, 2L, 1L, 1L, 3L,
2L, 3L, 1L, 3L, 1L, 4L, 4L, 3L, 4L, 2L, 1L, 1L, 2L, 4L, 2L,
1L, 3L, 2L, 3L, 1L, 3L, 2L, 2L, 3L, 1L, 1L, 1L, 4L, 4L, 3L,
2L, 4L, 1L, 2L, 2L, 3L, 1L, 3L, 2L), .Label = c("1", "2",
"3", "4"), class = "factor"), Depth = structure(c(2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = c("5", "30"), class = "factor"), sum = c(19.264,
27.405, 37.078, 40.186, 40.838, 42.793, 44.761, 47.656, 47.842,
53.317, 59.739, 40.824, 60.351, 61.321, 62.353, 64.521, 47.445,
55.643, 94.985, 59.336, 62.25, 63.425, 64.323, 110.563, 110.912,
68.41, 68.735, 116.45, 73.875, 127.29, 129.475, 130.305,
133.851, 78.288, 139.362, 79.38, 80.889, 83.889, 147.819,
150.538, 150.655, 89.098, 156.007, 159.148, 168.585, 173.395,
175.571, 116.011, 128.453, 129.605, 133.488, 140.31, 139.496,
143.325, 150.379, 153.905, 157.835, 163.186, 166.053, 174.543,
175.186, 176.603, 190.917, 192.106), cumsum = c(19.264, 27.405,
37.078, 40.186, 40.838, 42.793, 44.761, 47.656, 47.842, 53.317,
59.739, 60.088, 60.351, 61.321, 62.353, 64.521, 74.85, 92.721,
94.985, 102.129, 102.436, 104.263, 109.084, 110.563, 110.912,
116.252, 116.391, 116.45, 127.192, 127.29, 129.475, 130.305,
133.851, 138.027, 139.362, 139.731, 142.21, 146.242, 147.819,
150.538, 150.655, 153.619, 156.007, 159.148, 168.585, 173.395,
175.571, 210.996, 239.365, 240.168, 249.938, 267.6, 268.971,
273.63, 284.23, 293.267, 305.654, 313.841, 316.591, 330.55,
334.334, 345.188, 364.312, 367.677)), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -64L), vars = list(
Treatment, Rep, Depth), indices = list(c(27L, 50L), c(1L,
16L), c(39L, 58L), c(4L, 21L), c(32L, 54L), c(30L, 52L), c(23L,
49L), c(6L, 22L), c(18L, 47L), c(0L, 11L), c(24L, 48L), c(44L,
61L), c(13L, 36L), c(34L, 55L), c(3L, 20L), c(43L, 60L), c(7L,
26L), c(38L, 56L), c(40L, 57L), c(12L, 35L), c(46L, 63L), c(14L,
37L), c(45L, 62L), c(15L, 41L), c(10L, 33L), c(29L, 51L), c(2L,
17L), c(42L, 59L), c(8L, 25L), c(9L, 28L), c(31L, 53L), c(5L,
19L)), drop = TRUE, group_sizes = c(2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), biggest_group_size = 2L, .Names = c("Date",
"Treatment", "Rep", "Depth", "sum", "cumsum"), labels = structure(list(
Treatment = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), .Label = c("Disc", "Strip_NT",
"Strip_ST", "Vt_high", "Vt_low"), class = "factor"), Rep = structure(c(1L,
1L, 2L, 2L, 3L, 4L, 1L, 1L, 2L, 2L, 3L, 1L, 1L, 2L, 2L, 3L,
3L, 4L, 1L, 1L, 2L, 2L, 3L, 3L, 4L, 1L, 1L, 2L, 2L, 3L, 4L,
4L), .Label = c("1", "2", "3", "4"), class = "factor"), Depth = structure(c(1L,
2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L,
2L), .Label = c("5", "30"), class = "factor")), class = "data.frame", row.names = c(NA,
-32L), vars = list(Treatment, Rep, Depth), indices = list(c(34L,
40L), c(1L, 8L), c(48L, 55L), c(5L, 19L), c(41L, 47L), c(37L,
43L), c(31L, 38L), c(7L, 20L), c(30L, 33L), c(0L, 4L), c(32L,
36L), c(56L, 61L), c(16L, 27L), c(42L, 50L), c(3L, 17L), c(53L,
59L), c(9L, 23L), c(46L, 52L), c(49L, 54L), c(15L, 26L), c(60L,
63L), c(18L, 28L), c(57L, 62L), c(21L, 29L), c(14L, 25L), c(35L,
44L), c(2L, 12L), c(51L, 58L), c(10L, 22L), c(11L, 24L), c(39L,
45L), c(6L, 13L)), drop = TRUE, group_sizes = c(2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), biggest_group_size = 2L, .Names = c("Treatment",
"Rep", "Depth")))