我尝试在csv文件行元素之间找到欧几里德距离。我的csv文件格式如下。
A | B | C | d
1 0 0 2
2 1 1 0
3 0 0 1
首先,用户输入输入。例如,如果用户输入1,则输出将为[(' 1',' 0')]。然后,从用户获取第二输入以找到两点之间的欧几里德距离。代码如下。
import csv
from math import*
def euclidean_distance(x,y):
return sqrt(sum(pow(a-b,2) for a, b in zip(x, y)))
with open("file1.csv") as f:
csvr = csv.reader(f)
csvr = list(csvr)
f = open( 'file1.csv', 'rU' ) #open the file in read universal mode
i = int(input("Input1: "))
output = []
for line in csvr[i]:
cells = line.split( ";" )
output.append( ( cells[ 0 ], cells[ 1 ] ) ) #since we want the first and second column
i2 = int(input("Input2: "))
output2 = []
for line in csvr[i2]:
cells = line.split( ";" )
output2.append( ( cells[ 0 ], cells[ 1 ] ) ) #since we want the first and second column
f.close()
print output
print output2
print euclidean_distance(output,output2)
错误如下。我该如何解决?谢谢你的进步。
def euclidean_distance(x,y):
return sqrt(sum(pow(a-b,2) for a, b in zip(x, y)))
with open("file1.csv") as f:
csvr = csv.reader(f)
csvr = list(csvr)
f = open( 'file1.csv', 'rU' ) #open the file in read universal mode
i = int(input("Input1: "))
output = []
for line in csvr[i]:
cells = line.split( ";" )
output.append( ( cells[ 0 ], cells[ 1 ] ) ) #since we want the first and second column
i2 = int(input("Input2: "))
output2 = []
for line in csvr[i2]:
cells = line.split( ";" )
output2.append( ( cells[ 0 ], cells[ 1 ] ) ) #since we want the first and second column
f.close()
print output
print output2
print euclidean_distance(output,output2)
答案 0 :(得分:1)
以下是如何使用numpy.linalg.norm计算欧几里德距离的示例:
import numpy as np
csv = np.genfromtxt ('file1.csv', delimiter=",")
i = int(input("Input1: "))
second = csv[i,0:2] #selects ith row and 0th & 1st columns
i2 = int(input("Input2: "))
third = csv[i2,0:2] #selects ith row and 0th & 1st columns
print second
print third
a=np.array(second)
b=np.array(third)
dist = np.linalg.norm(a-b)
print dist
另请注意,输入数据类似于
A B C D
1 0 0 2
2 1 1 0
3 0 0 1
输出
Input1: 1
Input2: 2
[ 1. 0.]
[ 2. 1.]
1.41421356237