如何像“相机”那样实时进行人脸检测?
我注意到10.0之后不推荐使用 AVCaptureStillImageOutput ,所以我使用 相反, AVCapturePhotoOutput 。但是,我发现我为面部检测保存的图像并不那么令人满意?有任何想法吗?
更新
试图@Shravya Boggarapu提到。目前,我使用AVCaptureMetadataOutput
来检测没有CIFaceDetector
的面部。它按预期工作。然而,当我试图画出脸部的边界时,似乎错位了。任何的想法?
let metaDataOutput = AVCaptureMetadataOutput()
captureSession.sessionPreset = AVCaptureSessionPresetPhoto
let backCamera = AVCaptureDevice.defaultDevice(withDeviceType: .builtInWideAngleCamera, mediaType: AVMediaTypeVideo, position: .back)
do {
let input = try AVCaptureDeviceInput(device: backCamera)
if (captureSession.canAddInput(input)) {
captureSession.addInput(input)
// MetadataOutput instead
if(captureSession.canAddOutput(metaDataOutput)) {
captureSession.addOutput(metaDataOutput)
metaDataOutput.setMetadataObjectsDelegate(self, queue: DispatchQueue.main)
metaDataOutput.metadataObjectTypes = [AVMetadataObjectTypeFace]
previewLayer = AVCaptureVideoPreviewLayer(session: captureSession)
previewLayer?.frame = cameraView.bounds
previewLayer?.videoGravity = AVLayerVideoGravityResizeAspectFill
cameraView.layer.addSublayer(previewLayer!)
captureSession.startRunning()
}
}
} catch {
print(error.localizedDescription)
}
和
extension CameraViewController: AVCaptureMetadataOutputObjectsDelegate {
func captureOutput(_ captureOutput: AVCaptureOutput!, didOutputMetadataObjects metadataObjects: [Any]!, from connection: AVCaptureConnection!) {
if findFaceControl {
findFaceControl = false
for metadataObject in metadataObjects {
if (metadataObject as AnyObject).type == AVMetadataObjectTypeFace {
print("")
print(metadataObject)
let bounds = (metadataObject as! AVMetadataFaceObject).bounds
print("origin x: \(bounds.origin.x)")
print("origin y: \(bounds.origin.y)")
print("size width: \(bounds.size.width)")
print("size height: \(bounds.size.height)")
print("cameraView width: \(self.cameraView.frame.width)")
print("cameraView height: \(self.cameraView.frame.height)")
var face = CGRect()
face.origin.x = bounds.origin.x * self.cameraView.frame.width
face.origin.y = bounds.origin.y * self.cameraView.frame.height
face.size.width = bounds.size.width * self.cameraView.frame.width
face.size.height = bounds.size.height * self.cameraView.frame.height
print(face)
showBounds(at: face)
}
}
}
}
}
原始
var captureSession = AVCaptureSession()
var photoOutput = AVCapturePhotoOutput()
var previewLayer: AVCaptureVideoPreviewLayer?
override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear(true)
captureSession.sessionPreset = AVCaptureSessionPresetHigh
let backCamera = AVCaptureDevice.defaultDevice(withMediaType: AVMediaTypeVideo)
do {
let input = try AVCaptureDeviceInput(device: backCamera)
if (captureSession.canAddInput(input)) {
captureSession.addInput(input)
if(captureSession.canAddOutput(photoOutput)){
captureSession.addOutput(photoOutput)
captureSession.startRunning()
previewLayer = AVCaptureVideoPreviewLayer(session: captureSession)
previewLayer?.videoGravity = AVLayerVideoGravityResizeAspectFill
previewLayer?.frame = cameraView.bounds
cameraView.layer.addSublayer(previewLayer!)
}
}
} catch {
print(error.localizedDescription)
}
}
func captureImage() {
let settings = AVCapturePhotoSettings()
let previewPixelType = settings.availablePreviewPhotoPixelFormatTypes.first!
let previewFormat = [kCVPixelBufferPixelFormatTypeKey as String: previewPixelType
]
settings.previewPhotoFormat = previewFormat
photoOutput.capturePhoto(with: settings, delegate: self)
}
func capture(_ captureOutput: AVCapturePhotoOutput, didFinishProcessingPhotoSampleBuffer photoSampleBuffer: CMSampleBuffer?, previewPhotoSampleBuffer: CMSampleBuffer?, resolvedSettings: AVCaptureResolvedPhotoSettings, bracketSettings: AVCaptureBracketedStillImageSettings?, error: Error?) {
if let error = error {
print(error.localizedDescription)
}
// Not include previewPhotoSampleBuffer
if let sampleBuffer = photoSampleBuffer,
let dataImage = AVCapturePhotoOutput.jpegPhotoDataRepresentation(forJPEGSampleBuffer: sampleBuffer, previewPhotoSampleBuffer: nil) {
self.imageView.image = UIImage(data: dataImage)
self.imageView.isHidden = false
self.previewLayer?.isHidden = true
self.findFace(img: self.imageView.image!)
}
}
findFace
适用于普通图像。但是,我通过相机拍摄的图像不起作用,或者有时只识别一张脸。
普通图片
捕获图片
func findFace(img: UIImage) {
guard let faceImage = CIImage(image: img) else { return }
let accuracy = [CIDetectorAccuracy: CIDetectorAccuracyHigh]
let faceDetector = CIDetector(ofType: CIDetectorTypeFace, context: nil, options: accuracy)
// For converting the Core Image Coordinates to UIView Coordinates
let detectedImageSize = faceImage.extent.size
var transform = CGAffineTransform(scaleX: 1, y: -1)
transform = transform.translatedBy(x: 0, y: -detectedImageSize.height)
if let faces = faceDetector?.features(in: faceImage, options: [CIDetectorSmile: true, CIDetectorEyeBlink: true]) {
for face in faces as! [CIFaceFeature] {
// Apply the transform to convert the coordinates
var faceViewBounds = face.bounds.applying(transform)
// Calculate the actual position and size of the rectangle in the image view
let viewSize = imageView.bounds.size
let scale = min(viewSize.width / detectedImageSize.width,
viewSize.height / detectedImageSize.height)
let offsetX = (viewSize.width - detectedImageSize.width * scale) / 2
let offsetY = (viewSize.height - detectedImageSize.height * scale) / 2
faceViewBounds = faceViewBounds.applying(CGAffineTransform(scaleX: scale, y: scale))
print("faceBounds = \(faceViewBounds)")
faceViewBounds.origin.x += offsetX
faceViewBounds.origin.y += offsetY
showBounds(at: faceViewBounds)
}
if faces.count != 0 {
print("Number of faces: \(faces.count)")
} else {
print("No faces ")
}
}
}
func showBounds(at bounds: CGRect) {
let indicator = UIView(frame: bounds)
indicator.frame = bounds
indicator.layer.borderWidth = 3
indicator.layer.borderColor = UIColor.red.cgColor
indicator.backgroundColor = .clear
self.imageView.addSubview(indicator)
faceBoxes.append(indicator)
}
答案 0 :(得分:11)
检测面部有两种方法:一种是CIFaceDetector,另一种是AVCaptureMetadataOutput
根据您的要求,选择与您相关的内容。
CIFaceDetector有更多功能 - 例如:给你眼睛和嘴巴的位置,微笑探测器等
另一方面,AVCaptureMetadataOutput是在帧上计算的,并且跟踪检测到的面部,并且我们不需要添加额外的代码。我发现,由于跟踪面在此过程中被更可靠地检测到。这个问题是你只需要检测面部,没有眼睛/嘴巴的位置。 此方法的另一个优点是方向问题较小,因为只要更改了设备方向并且面的方向将相对于该方向,您就可以进行videoOrientation
就我而言,我的应用程序使用YUV420作为所需格式,因此实时使用CIDetector(与RGB一起使用)是不可行的。使用AVCaptureMetadataOutput节省了大量精力,并且由于持续跟踪而执行更可靠。
一旦我有了面部的边界框,我编写了额外的功能,例如皮肤检测,并将其应用于静止图像。
注意:捕获静止图像时,面板信息会随元数据一起添加,因此不会出现同步问题。
您还可以使用两者的组合来获得更好的效果。
根据您的申请,探索并评估利弊。
<强>更新强>
脸部矩形是wrt图像原点。因此,对于屏幕,它可能会有所不同。 使用以下内容:
for (AVMetadataFaceObject *faceFeatures in metadataObjects) {
CGRect face = faceFeatures.bounds;
CGRect facePreviewBounds = CGRectMake(face.origin.y * previewLayerRect.size.width,
face.origin.x * previewLayerRect.size.height,
face.size.width * previewLayerRect.size.height,
face.size.height * previewLayerRect.size.width);
/* Draw rectangle facePreviewBounds on screen */
}
答案 1 :(得分:6)
要在iOS上执行面部检测,有CIDetector(Apple) 或Mobile Vision(Google)API。
IMO,Google Mobile Vision提供了更好的性能。
如果您有兴趣,here is the project you can play with. (iOS 10.2, Swift 3)
2017年WWDC之后,Apple在iOS 11中引入了CoreML。 Vision 框架使面部检测更加准确:)
我做了Demo Project。包含 Vision v.s. CIDetector 即可。此外,它还包含实时的面部地标检测。
答案 2 :(得分:1)
extension CameraViewController: AVCaptureMetadataOutputObjectsDelegate {
func captureOutput(_ captureOutput: AVCaptureOutput!, didOutputMetadataObjects metadataObjects: [Any]!, from connection: AVCaptureConnection!) {
if findFaceControl {
findFaceControl = false
let faces = metadata.flatMap { $0 as? AVMetadataFaceObject } .flatMap { (face) -> CGRect in
guard let localizedFace =
previewLayer?.transformedMetadataObject(for: face) else { return nil }
return localizedFace.bounds }
for face in faces {
let temp = UIView(frame: face)
temp.layer.borderColor = UIColor.white
temp.layer.borderWidth = 2.0
view.addSubview(view: temp)
}
}
}
}
请务必删除didOutputMetadataObjects创建的视图。
跟踪活跃的面部ids是最好的方法^
此外,当您尝试查找预览图层的面部位置时,使用面部数据和变换会更加容易。另外我认为CIDetector是垃圾,metadataoutput将使用硬件进行人脸检测,使其非常快。
答案 3 :(得分:1)
有点晚了,但这里是坐标问题的解决方案。您可以在预览图层上调用一种方法将元数据对象转换为坐标系:transformedMetadataObject
(适用于:metadataObject
)。
guard let transformedObject = previewLayer.transformedMetadataObject(for: metadataObject) else {
continue
}
let bounds = transformedObject.bounds
showBounds(at: bounds)
顺便说一下,如果您正在使用(或升级您的项目)Swift 4,AVCaptureMetadataOutputsObject
的委托方法已更改为:
func metadataOutput(_ output: AVCaptureMetadataOutput, didOutput metadataObjects: [AVMetadataObject], from connection: AVCaptureConnection)
亲切的问候
答案 4 :(得分:0)
通过查看您的代码,我发现了两件可能导致错误/不良人脸检测的事情。
[CIDetectorSmile: true, CIDetectorEyeBlink: true]
过滤结果。尝试将其设置为nil: faceDetector?.features(in: faceImage, options: nil)
AVCapturePhotoOutput.jpegPhotoDataRepresentation
方法生成检测和系统的源图像,默认情况下,它生成具有Left
/ LandscapeLeft
类型的特定方向的图像,我认为。因此,基本上您可以通过使用CIDetectorImageOrientation
键告诉面部检测器记住这一点。CIDetectorImageOrientation :此键的值是1..8的整数
NSNumber
,例如kCGImagePropertyOrientation
中的值。如果存在,将根据该方向进行检测,但返回的要素中的坐标仍将基于图像的坐标。
尝试将其设置为 faceDetector?.features(in: faceImage, options: [CIDetectorImageOrientation: 8 /*Left, bottom*/])
。
答案 5 :(得分:0)
对于AVCaptureVideoDataOutput创建以下设置
output.videoSettings = [kCVPixelBufferPixelFormatTypeKey as AnyHashable:Int(kCMPixelFormat_32BGRA)]
3.当您收到CMSampleBuffer时,请创建图像
DispatchQueue.main.async {
let sampleImg = self.imageFromSampleBuffer(sampleBuffer: sampleBuffer)
self.imageView.image = sampleImg
}
func imageFromSampleBuffer(sampleBuffer : CMSampleBuffer) -> UIImage
{
// Get a CMSampleBuffer's Core Video image buffer for the media data
let imageBuffer = CMSampleBufferGetImageBuffer(sampleBuffer);
// Lock the base address of the pixel buffer
CVPixelBufferLockBaseAddress(imageBuffer!, CVPixelBufferLockFlags.readOnly);
// Get the number of bytes per row for the pixel buffer
let baseAddress = CVPixelBufferGetBaseAddress(imageBuffer!);
// Get the number of bytes per row for the pixel buffer
let bytesPerRow = CVPixelBufferGetBytesPerRow(imageBuffer!);
// Get the pixel buffer width and height
let width = CVPixelBufferGetWidth(imageBuffer!);
let height = CVPixelBufferGetHeight(imageBuffer!);
// Create a device-dependent RGB color space
let colorSpace = CGColorSpaceCreateDeviceRGB();
// Create a bitmap graphics context with the sample buffer data
var bitmapInfo: UInt32 = CGBitmapInfo.byteOrder32Little.rawValue
bitmapInfo |= CGImageAlphaInfo.premultipliedFirst.rawValue & CGBitmapInfo.alphaInfoMask.rawValue
//let bitmapInfo: UInt32 = CGBitmapInfo.alphaInfoMask.rawValue
let context = CGContext.init(data: baseAddress, width: width, height: height, bitsPerComponent: 8, bytesPerRow: bytesPerRow, space: colorSpace, bitmapInfo: bitmapInfo)
// Create a Quartz image from the pixel data in the bitmap graphics context
let quartzImage = context?.makeImage();
// Unlock the pixel buffer
CVPixelBufferUnlockBaseAddress(imageBuffer!, CVPixelBufferLockFlags.readOnly);
// Create an image object from the Quartz image
let image = UIImage.init(cgImage: quartzImage!);
return (image);
}