在R
中,函数ftable()
默认创建一个带有所谓的不规则外观的表:
data(UCBAdmissions)
ftable(UCBAdmissions)
...
Dept A B C D E F
Admit Gender
Admitted Male 512 353 120 138 53 22
Female 89 17 202 131 94 24
Rejected Male 313 207 205 279 138 351
Female 19 8 391 244 299 317
行和列是“参差不齐”的,因为标签仅在更改时显示,明显的惯例是从上到下读取行,从左到右读取列。 (https://cran.r-project.org/doc/manuals/r-devel/R-data.html#Flat-contingency-tables)
问题:
我怎样才能得到同样的东西"衣衫褴褛的"正常data.frame
对象的外观?
可重复示例:
before= data.frame(C1= c(rep("A", 5), rep("L", 2)),
C2= c("B", rep("E", 3), rep("K", 2), "L"),
C3= c("C", "F", rep("H", 5)),
C4= c("D", "G", "I", rep("J", 4)),
stringsAsFactors = FALSE)
before
...
C1 C2 C3 C4
1 A B C D
2 A E F G
3 A E H I
4 A E H J
5 A K H J
6 L K H J
7 L L H J
一个函数如何将对象before
转换为类after
的新对象data.frame
,该对象使用print(after)
打印到控制台,如下所示。
C1 C2 C3 C4
1 A B C D
2 E F G
3 H I
4 J
5 K H J
6 L K H J
7 L H J
如果有必要,可以接受此演示文稿格式的遗漏数据丢失。
答案 0 :(得分:0)
也许不是最优雅的解决方案(a。许多for
循环,b。强制任何类型的列到字符,c。没有输入断言,d。慢等等),但是跟随函数{{ 1}}似乎基本上按照示例的要求工作:
rag_blank
...
## Task
before= data.frame(C1= c(rep("A", 5), rep("L", 2)),
C2= c("B", rep("E", 3), rep("K", 2), "L"),
C3= c("C", "F", rep("H", 5)),
C4= c("D", "G", "I", rep("J", 4)),
stringsAsFactors = FALSE)
before
## Solution
library(dplyr)
rag_blank= function(x, cols= seq_along(x), blank= ":"){
# Copy input
res= x
# 1st step: blank trailing cells
for(df_col in cols){
res[, df_col]= as.character(unlist(res[, df_col]))
x[, df_col]= as.character(unlist(x[, df_col]))
re= rle(unlist(res[, df_col]))
re_df= data.frame(value= re$values,
length= re$lengths,
stringsAsFactors = F) %>%
mutate(idx_start= cumsum(length) - length + 2,
idx_end= idx_start + length -2)
for(re_row in 1:nrow(re_df)){
if(re_df$idx_start[re_row]<= re_df$idx_end[re_row]){
res[(re_df$idx_start[re_row]:re_df$idx_end[re_row]), df_col]= blank
}
}
}
# 2nd step: restore value if blank, resp. changed from 1st step but left cell it is not blank
for(df_col in cols[-1]){
changed_before= res[, df_col]!= x[, df_col]
left_not_changed= res[, df_col-1]== x[, df_col-1]
to_change= changed_before & left_not_changed
res[to_change, df_col]= x[to_change, df_col]
}
res
}
rag_blank(before)
在某些情况下应用空白是不合适的,那么这可能会有所帮助:
C1 C2 C3 C4
1 A B C D
2 : E F G
3 : : H I
4 : : : J
5 : K H J
6 L K H J
7 : L H J
...
rag_index= function(x){
rag_blank(x) != x
}
rag_index(before)
更忙碌的例子:
C1 C2 C3 C4
[1,] FALSE FALSE FALSE FALSE
[2,] TRUE FALSE FALSE FALSE
[3,] TRUE TRUE FALSE FALSE
[4,] TRUE TRUE TRUE FALSE
[5,] TRUE FALSE FALSE FALSE
[6,] FALSE FALSE FALSE FALSE
[7,] TRUE FALSE FALSE FALSE
...
data("diamonds", package = "ggplot2")
print(rag_blank(x= head(diamonds, 30)), n= 100)
如果有更优雅的解决方案,请感谢您的反馈。
答案 1 :(得分:0)
这是我为此提出的一组功能:
# The main function
ragged <- function(indt, keys, blank = "") {
require(data.table)
indt <- setkeyv(as.data.table(indt), keys)
vals <- setdiff(names(indt), keys)
nams <- paste0(keys, "_copy")
for (i in seq_along(nams)) {
indt[, (nams[i]) := c(as.character(get(key(indt)[i])[1]),
rep(blank, .N-1)), by = eval(keys[seq(i)])]
}
out <- cbind(indt[, ..nams], indt[, ..vals])
out <- setnames(out, nams, keys)[]
## There has to be a better way to do this than to store the original object and the resulting object
out <- list(indt = indt[, (nams) := NULL][], out = out, keys = keys, blank = blank)
class(out) <- c("ragged", class(out))
out
}
# The print method
print.ragged <- function(x, ...) {
print(x$out)
}
# Allowing for extraction
`[.ragged` <- function(inragged, ...) {
out <- inragged$indt[...]
out <- ragged(out, keys = intersect(inragged$keys, names(out)), blank = inragged$blank)
out
}
它使用data.table
包,并首先使用setkey
对数据进行排序。我认为,如果要进行这种分层显示,则对数据进行排序是有意义的。
以下是before
数据集的一些示例。
# Nesting just the first two columns.
ragged(before, c("C1", "C2"))
## C1 C2 C3 C4
## 1: A B C D
## 2: E F G
## 3: H I
## 4: H J
## 5: K H J
## 6: L K H J
## 7: L H J
# Nesting with all the columns and inserting a marker
ragged(before, names(before), ":")
## C1 C2 C3 C4
## 1: A B C D
## 2: : E F G
## 3: : : H I
## 4: : : : J
## 5: : K H J
## 6: L K H J
## 7: : L H J
请注意,由于数据是在使用ragged
之前进行排序的,因此在head(diamonds, 30)
上使用此函数的结果将不同于您的方法。
ragged(head(diamonds, 30), names(diamonds), ":")
## carat cut color clarity depth table price x y z
## 1: 0.2 Premium E SI2 60.2 62 345 3.79 3.75 2.27
## 2: 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
## 3: 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
## 4: : Premium F SI1 60.4 61 342 3.88 3.84 2.33
## 5: 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
## 6: : Very Good D VS2 60.5 61 357 3.96 3.97 2.4
## 7: : : E VS2 63.8 55 352 3.85 3.92 2.48
## 8: : : F VS1 60.9 57 357 3.96 3.99 2.42
## 9: : : G VVS2 60.4 58 354 3.97 4.01 2.41
## 10: : : H VS1 59.4 61 338 4 4.05 2.39
## 11: : : : : 61 57 353 3.94 3.96 2.41
## 12: : Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 13: : : J VS1 62.8 56 340 3.93 3.9 2.46
## 14: 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
## 15: : : J VVS2 62.8 57 336 3.94 3.96 2.48
## 16: : Premium I VS1 62.5 57 355 3.97 3.94 2.47
## 17: 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
## 18: 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
## 19: 0.3 Good I SI2 63.3 56 351 4.26 4.3 2.71
## 20: : : J SI1 63.4 54 351 4.23 4.29 2.7
## 21: : : : : 63.8 56 351 4.23 4.26 2.71
## 22: : : : : 64 55 339 4.25 4.28 2.73
## 23: : Very Good J SI1 62.7 59 351 4.21 4.27 2.66
## 24: : : : VS2 62.2 57 357 4.28 4.3 2.67
## 25: : Ideal I SI2 62 54 348 4.31 4.34 2.68
## 26: 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
## 27: : Very Good J SI1 58.1 62 353 4.44 4.47 2.59
## 28: : : : : 59.4 62 353 4.39 4.43 2.62
## 29: : Ideal J SI2 62.2 54 344 4.35 4.37 2.71
## 30: 0.32 Premium E I1 60.9 58 345 4.38 4.42 2.68
## carat cut color clarity depth table price x y z
借助[.ragged
函数,我们可以继续对ragged
对象进行操作。例如:
ragged(head(diamonds, 30), c("cut", "color"), ":")[, mean(price), .(cut, color)]
## cut color V1
## 1: Fair E 337.0000
## 2: Good E 327.0000
## 3: : I 351.0000
## 4: : J 344.0000
## 5: Very Good D 357.0000
## 6: : E 352.0000
## 7: : F 357.0000
## 8: : G 354.0000
## 9: : H 342.6667
## 10: : I 336.0000
## 11: : J 350.0000
## 12: Premium E 338.6667
## 13: : F 342.0000
## 14: : I 344.5000
## 15: Ideal E 326.0000
## 16: : I 348.0000
## 17: : J 342.0000