我已经使用 pam 函数(R中的集群包)成功运行了Medoids分区,现在,我想使用结果将新观察结果归因于之前定义的集群/ medoids 。
另一种解决问题的方法是,给出 pam 函数找到的 k 簇/ medoids,它更接近于另一个不是在初始数据集中?
x<-matrix(c(1,1.2,0.9,2.3,2,1.8,
3.2,4,3.1,3.9,3,4.4),6,2)
x
[,1] [,2]
[1,] 1.0 3.2
[2,] 1.2 4.0
[3,] 0.9 3.1
[4,] 2.3 3.9
[5,] 2.0 3.0
[6,] 1.8 4.4
pam(x,2)
观察1,3和5,以及2,4和6聚集在一起,观察1和6是中间体:
Medoids:
ID
[1,] 1 1.0 3.2
[2,] 6 1.8 4.4
Clustering vector:
[1] 1 2 1 2 1 2
现在,应该将哪个cluster / medoid y归因于/与之关联?
y<-c(1.5,4.5)
哦,如果你有几个解决方案,计算时间在我拥有的大数据集中很重要。
答案 0 :(得分:3)
通常在k群集中尝试此操作:
k <- 2 # pam with k clusters
res <- pam(x,k)
y <- c(1.5,4.5) # new point
# get the cluster centroid to which the new point is to be assigned to
# break ties by taking the first medoid in case there are multiple ones
# non-vectorized function
get.cluster1 <- function(res, y) which.min(sapply(1:k, function(i) sum((res$medoids[i,]-y)^2)))
# vectorized function, much faster
get.cluster2 <- function(res, y) which.min(colSums((t(res$medoids)-y)^2))
get.cluster1(res, y)
#[1] 2
get.cluster2(res, y)
#[1] 2
# comparing the two implementations (the vectorized function takes much les s time)
library(microbenchmark)
microbenchmark(get.cluster1(res, y), get.cluster2(res, y))
#Unit: microseconds
# expr min lq mean median uq max neval cld
# get.cluster1(res, y) 31.219 32.075 34.89718 32.930 33.358 135.995 100 b
# get.cluster2(res, y) 17.107 17.962 19.12527 18.817 19.245 41.483 100 a
扩展到任意距离函数:
# distance function
euclidean.func <- function(x, y) sqrt(sum((x-y)^2))
manhattan.func <- function(x, y) sum(abs(x-y))
get.cluster3 <- function(res, y, dist.func=euclidean.func) which.min(sapply(1:k, function(i) dist.func(res$medoids[i,], y)))
get.cluster3(res, y) # use Euclidean as default
#[1] 2
get.cluster3(res, y, manhattan.func) # use Manhattan distance
#[1] 2