我在R中的数据框有些问题 我的数据框看起来像这样:
ID TIME DAY URL_NAME VALUE TIME_SPEND
1 12:15 Monday HOME 4 30
1 13:15 Tuesday CUSTOMERS 5 21
1 15:00 Thursday PLANTS 8 8
1 16:21 Friday MANAGEMENT 1 6
....
因此,我想将包含相同“ID”的行写入一行。 看起来像这样:
ID TIME DAY URL_NAME VALUE TIME_SPEND TIME1 DAY1 URL_NAME1 VALUE1 TIME_SPEND1 TIME2 DAY2 URL_NAME2 VALUE2 TIME_SPEND2 TIME3 DAY3 URL_NAME3 VALUE3 TIME_SPEND3
1 12:15 Monday HOME 4 30 13:15 Tuesday CUSTOMERS 5 21 15:00 Thursday PLANTS 8 8 16:21 Friday MANAGEMENT 1 6
我的第二个问题是,大约有1.500.00个唯一ID,我想对整个数据框执行此操作。
我没有找到适合我的问题的任何解决方案。 我会很乐意处理我的问题的任何解决方案或链接。
答案 0 :(得分:1)
我建议使用“data.table”包中的dcast
,这样可以让您一次重塑多个度量变量。
示例:
library(data.table)
as.data.table(mydf)[, dcast(.SD, ID ~ rowid(ID), value.var = names(mydf)[-1])]
# ID TIME_1 TIME_2 TIME_3 DAY_1 DAY_2 DAY_3 URL_NAME_1 URL_NAME_2 URL_NAME_3 VALUE_1 VALUE_2
# 1: 1 12:15 13:15 15:00 Monday Tuesday Thursday HOME CUSTOMERS PLANTS 4 5
# 2: 2 14:15 10:19 NA Tuesday Monday NA CUSTOMERS CUSTOMERS NA 2 9
# VALUE_3 TIME_SPEND_1 TIME_SPEND_2 TIME_SPEND_3
# 1: 8 30 19 40
# 2: NA 21 8 NA
以下是使用的示例数据:
mydf <- data.frame(
ID = c(1, 1, 1, 2, 2),
TIME = c("12:15", "13:15", "15:00", "14:15", "10:19"),
DAY = c("Monday", "Tuesday", "Thursday", "Tuesday", "Monday"),
URL_NAME = c("HOME", "CUSTOMERS", "PLANTS", "CUSTOMERS", "CUSTOMERS"),
VALUE = c(4, 5, 8, 2, 9),
TIME_SPEND = c(30, 19, 40, 21, 8)
)
mydf
# ID TIME DAY URL_NAME VALUE TIME_SPEND
# 1 1 12:15 Monday HOME 4 30
# 2 1 13:15 Tuesday CUSTOMERS 5 19
# 3 1 15:00 Thursday PLANTS 8 40
# 4 2 14:15 Tuesday CUSTOMERS 2 21
# 5 2 10:19 Monday CUSTOMERS 9 8
答案 1 :(得分:0)
尝试使用此tidyverse
解决方案,它将产生接近您想要的输出。您可以按TIME
分组,然后创建一个顺序ID,以标识将来的列。之后,将其整形为long(pivot_longer()),将变量名与id组合在一起,然后将其整形为width(pivot_wider())。这是我使用自己的数据集的代码,
df1 <- data.frame(Components = c(rep("ABC",5),rep("BCD",5)),
Size = c(sample(1:100,5),sample(45:100,5)),
Age = c(sample(1:100,5),sample(45:100,5)))
对于上面生成的数据集,以下代码段是解决方案:
library(tidyverse)
#Code
newdf <- df1 %>% group_by(Components) %>% mutate(id=row_number()) %>%
pivot_longer(-c(Components,id)) %>%
mutate(name=paste0(name,'.',id)) %>% select(-id) %>%
pivot_wider(names_from = name,values_from=value)
输出看起来像:
# A tibble: 2 x 11
# Groups: Components [2]
Components Size.1 Age.1 Size.2 Age.2 Size.3 Age.3 Size.4 Age.4 Size.5 Age.5
<fct> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
1 ABC 23 94 52 89 15 25 76 38 33 99
2 BCD 59 62 55 81 81 61 80 83 97 68
替代解决方案 :
我们可以使用unite
合并列,然后使用pivot_wider
library(dplyr)
library(tidyr)
library(data.table)
df1 %>%
mutate(rn = rowid(Components)) %>%
pivot_longer(cols = Size:Age) %>%
unite(name, name, rn, sep=".") %>%
pivot_wider(names_from = name, values_from = value)
输出看起来像:
# A tibble: 2 x 11
# Components Size.1 Age.1 Size.2 Age.2 Size.3 Age.3 Size.4 Age.4 Size.5 Age.5
# <chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#1 ABC 11 16 79 57 70 2 80 6 91 24
#2 BCD 67 81 63 77 48 73 52 100 49 76
两个解决方案都是@Duck的Duck's Profile URL和@akrun的Akrun's Profile URL。感谢他们一吨。