我有一个包含
的数据框user_id date browser conversion test sex age country
1 2015-12-03 IE 1 0 M 32.0 US
到目前为止,这是我的整个代码!
data["country"].fillna("missing")
data["age"].fillna(-10000, inplace=True)
data["ads_channel"].fillna("missing")
data["sex"].fillna("missing")
data['date'] = pd.to_datetime(data.date)
columns = data.columns.tolist()
columns = [c for c in columns if c not in ["test"]]
from sklearn import tree
clf = tree.DecisionTreeClassifier(max_depth=2, min_samples_leaf = (len(data)/100) )
clf = clf.fit(data[columns],data["test"])
我收到此错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-560-95a8a54aa939> in <module>()
4 from sklearn import tree
5 clf = tree.DecisionTreeClassifier(max_depth=2, min_samples_leaf = (len(data)/100) )
----> 6 clf = clf.fit(data[columns],data["test"])
C:\Users\SnehaPriya\Anaconda2\lib\site-packages\sklearn\tree\tree.pyc in fit(self, X, y, sample_weight, check_input, X_idx_sorted)
152 random_state = check_random_state(self.random_state)
153 if check_input:
--> 154 X = check_array(X, dtype=DTYPE, accept_sparse="csc")
155 if issparse(X):
156 X.sort_indices()
C:\Users\SnehaPriya\Anaconda2\lib\site-packages\sklearn\utils\validation.pyc in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
371 force_all_finite)
372 else:
--> 373 array = np.array(array, dtype=dtype, order=order, copy=copy)
374
375 if ensure_2d:
TypeError: float() argument must be a string or a number
我仍在学习编码,我想知道如何克服这个错误。 任何帮助将不胜感激!
答案 0 :(得分:4)
IIUC您还需要排除列date
:
columns = [c for c in columns if c not in ["test", 'date']]
因为错误:
TypeError:float()参数必须是字符串或数字,而不是&#39;时间戳&#39;
答案 1 :(得分:4)
保留日期(时间)列的解决方案:
data['date'] = pd.to_numeric(pd.to_datetime(data['date']))