我有两个pandas数据帧,我试图将它们组合成一个数据帧。以下是我如何设置它们的方法:
a = {'date':['1/1/2015 00:00','1/1/2015 00:15','1/1/2015 00:30'], 'num':[1,2,3]}
b = {'date':['1/1/2015 01:15','1/1/2015 01:30','1/1/2015 01:45'], 'num':[4,5,6]}
dfa = pd.DataFrame(a)
dfb = pd.DataFrame(b)
dfa['date'] = dfa['date'].apply(pd.to_datetime)
dfb['date'] = dfb['date'].apply(pd.to_datetime)
然后,我会从每个时间戳中找到earliest
和latest
时间戳,并创建一个仅以date
系列开头的新数据框:
earliest = min(dfa['date'].min(), dfb['date'].min())
latest = max(dfa['date'].max(), dfb['date'].max())
date_range = pd.date_range(earliest, latest, freq='15min')
dfd = pd.DataFrame({'date':date_range})
然后我想将它们全部合并到一个数据框中,dfd
作为基础,因为它将包含所有正确的时间戳。所以我合并了dfd
和dfa
,一切都很好:
dfd = pd.merge(dfd, dfa, how = 'outer', on = 'date')
然而,当我将其与dfb
合并时,date
系列变得棘手,我无法弄清楚原因。
dfd = pd.merge(dfd, dfb, how = 'outer', on = ['date','num'])
...产率:
date num
0 2015-01-01 00:00:00 1.0
1 2015-01-01 00:15:00 2.0
2 2015-01-01 00:30:00 3.0
3 2015-01-01 00:45:00 NaN
4 2015-01-01 01:00:00 NaN
5 2015-01-01 01:15:00 NaN
6 2015-01-01 01:30:00 NaN
7 2015-01-01 01:45:00 NaN
8 2015-01-01 01:15:00 4.0
9 2015-01-01 01:30:00 5.0
10 2015-01-01 01:45:00 6.0
我希望4.0
填写2015-01-01 01:15:00
时段等,而不是创建新行。
或者如果我尝试:
dfd = pd.merge(dfd, dfb, how = 'outer', on = 'date')
我明白了:
date num_x num_y
0 2015-01-01 00:00:00 1.0 NaN
1 2015-01-01 00:15:00 2.0 NaN
2 2015-01-01 00:30:00 3.0 NaN
3 2015-01-01 00:45:00 NaN NaN
4 2015-01-01 01:00:00 NaN NaN
5 2015-01-01 01:15:00 NaN 4.0
6 2015-01-01 01:30:00 NaN 5.0
7 2015-01-01 01:45:00 NaN 6.0
这也不是我想要的(只需要一个num
列)。任何帮助将不胜感激。
答案 0 :(得分:2)
dfa.set_index('date').combine_first(dfb.set_index('date')) \
.asfreq('15T').reset_index()
date num
0 2015-01-01 00:00:00 1.0000
1 2015-01-01 00:15:00 2.00
2 2015-01-01 00:30:00 3.00
3 2015-01-01 00:45:00 nan
4 2015-01-01 01:00:00 nan
5 2015-01-01 01:15:00 4.00
6 2015-01-01 01:30:00 5.00
7 2015-01-01 01:45:00 6.00
另一种解决方案
dfa.append(dfb).set_index('date').asfreq('15T').reset_index()
答案 1 :(得分:1)
首先合并dfa和dfb:
d = pd.merge(dfa, dfb, on=['date','num'], how='outer')
然后将结果与你定义的dfd结合起来:
result = pd.merge(d, dfd, on='date', how='outer')
print result.sort('date')
输出:
date num
0 2015-01-01 00:00:00 1.0
1 2015-01-01 00:15:00 2.0
2 2015-01-01 00:30:00 3.0
6 2015-01-01 00:45:00 NaN
7 2015-01-01 01:00:00 NaN
3 2015-01-01 01:15:00 4.0
4 2015-01-01 01:30:00 5.0
5 2015-01-01 01:45:00 6.0
答案 2 :(得分:0)
这有效:
a = {'date':['1/1/2015 00:00','1/1/2015 00:15','1/1/2015 00:30'], 'num':[1,2,3]}
b = {'date':['1/1/2015 01:15','1/1/2015 01:30','1/1/2015 01:45'], 'num':[4,5,6]}
dfa = pd.DataFrame(a)
dfb = pd.DataFrame(b)
dfa['date'] = dfa['date'].apply(pd.to_datetime)
dfb['date'] = dfb['date'].apply(pd.to_datetime)
earliest = min(dfa['date'].min(), dfb['date'].min())
latest = max(dfa['date'].max(), dfb['date'].max())
date_range = pd.date_range(earliest, latest, freq='15min')
dfd = pd.DataFrame({'date':date_range})
df_dates = pd.merge(dfa, dfb, how = 'outer')
df_final = pd.merge(dfd, df_dates, how = 'outer')
df_final