我有兴趣测试一些网络可视化技术,但在尝试这些功能之前,我想使用数据帧构建一个邻接矩阵(from,to),如下所示。
Id Gender Col_Cold_1 Col_Cold_2 Col_Cold_3 Col_Hot_1 Col_Hot_2 Col_Hot_3
10 F pain sleep NA infection medication walking
14 F Bump NA muscle NA twitching flutter
17 M pain hemoloma Callus infection
18 F muscle pain twitching medication
我的目标是创建一个邻接矩阵,如下所示
1) All values in columns with keyword Cold will contribute to the rows
2) All values in columns with keyword Hot will contribute to the columns
例如,pain, sleep, Bump, muscle, hemaloma
是关键字冷列下的单元格值,它们将形成行,而infection, medication, Callus, walking, twitching, flutter
等单元格值位于关键字热,这将形成关联矩阵的列。
最终所需的输出应如下所示:
infection medication walking twitching flutter Callus
pain 2 2 1 1 1
sleep 1 1 1
Bump 1 1
muscle 1 1
hemaloma 1 1
[pain, infection]
= 2因为疼痛和感染之间的关联在原始数据框中出现两次:一次在第1行,第二次在第3行。
[pain, medication]
= 2因为疼痛和药物之间的关联在第1行和第4行再次出现两次。
非常感谢有关制作此类关联矩阵的任何建议或建议。
可重复数据集
df = structure(list(id = c(10, 14, 17, 18), Gender = structure(c(1L, 1L, 2L, 1L), .Label = c("F", "M"), class = "factor"), Col_Cold_1 = structure(c(4L, 2L, 1L, 3L), .Label = c("", "Bump", "muscle", "pain"), class = "factor"), Col_Cold_2 = structure(c(4L, 2L, 3L, 1L), .Label = c("", "NA", "pain", "sleep"), class = "factor"), Col_Cold_3 = structure(c(1L, 3L, 2L, 4L), .Label = c("NA", "hemaloma", "muscle", "pain" ), class = "factor"), Col_Hot_1 = structure(c(4L, 3L, 2L, 1L), .Label = c("", "Callus", "NA", "infection"), class = "factor"), Col_Hot_2 = structure(c(2L, 3L, 1L, 3L), .Label = c("infection", "medication", "twitching"), class = "factor"), Col_Hot_3 = structure(c(4L, 2L, 1L, 3L), .Label = c("", "flutter", "medication", "walking" ), class = "factor")), .Names = c("id", "Gender", "Col_Cold_1", "Col_Cold_2", "Col_Cold_3", "Col_Hot_1", "Col_Hot_2", "Col_Hot_3" ), row.names = c(NA, -4L), class = "data.frame")
答案 0 :(得分:1)
一种方法是将数据集变为“整洁”形式,然后使用xtabs
。首先,一些清理:
df[] <- lapply(df, as.character) # Convert factors to characters
df[df == "NA" | df == "" | is.na(df)] <- NA # Make all blanks NAs
现在,整理数据集:
library(tidyr)
library(dplyr)
out <- do.call(rbind, sapply(grep("^Col_Cold", names(df), value = T), function(x){
vars <- c(x, grep("^Col_Hot", names(df), value = T))
setNames(gather_(select(df, one_of(vars)),
key_col = x,
value_col = "value",
gather_cols = vars[-1])[, c(1, 3)], c("cold", "hot"))
}, simplify = FALSE))
这个想法是将每个“冷”列与每个“热”列“配对”以形成一个长数据集。 out
看起来像这样:
out
# cold hot
# 1 pain infection
# 2 Bump <NA>
# 3 <NA> Callus
# 4 muscle <NA>
# 5 pain medication
# ...
最后,使用xtabs
制作所需的输出:
xtabs(~ cold + hot, na.omit(out))
# hot
# cold Callus flutter infection medication twitching walking
# Bump 0 1 0 0 1 0
# hemaloma 1 0 1 0 0 0
# muscle 0 1 0 1 2 0
# pain 1 0 2 2 1 1
# sleep 0 0 1 1 0 1