如何使用matlib函数plt.imshow(image)显示多个图像?
例如我的代码如下:
for file in images:
process(file)
def process(filename):
image = mpimg.imread(filename)
<something gets done here>
plt.imshow(image)
我的结果显示只有最后处理过的图像才能有效地覆盖其他图像
答案 0 :(得分:9)
您可以使用以下内容设置框架以显示多个图像:
for file in images:
process(file)
def process(filename):
image = mpimg.imread(filename)
<something gets done here>
plt.figure()
plt.imshow(image)
这将垂直堆叠图像
答案 1 :(得分:0)
首先,将文件中的图像加载到numpy矩阵中
import numpy
import cv2
import os
def load_image(image: Union[str, numpy.ndarray]) -> numpy.ndarray:
# Image provided ad string, loading from file ..
if isinstance(image, str):
# Checking if the file exist
if not os.path.isfile(image):
print("File {} does not exist!".format(imageA))
return None
# Reading image as numpy matrix in gray scale (image, color_param)
return cv2.imread(image, 0)
# Image alredy loaded
elif isinstance(image, numpy.ndarray):
return image
# Format not recognized
else:
print("Unrecognized format: {}".format(type(image)))
print("Unrecognized format: {}".format(image))
return None
然后您可以使用以下方法绘制多幅图像:
import matplotlib.pyplot as plt
def show_images(images: list) -> None:
n: int = len(images)
f = plt.figure()
for i in range(n):
# Debug, plot figure
f.add_subplot(1, n, i + 1)
plt.imshow(images[i])
plt.show(block=True)
答案 2 :(得分:0)
要显示多个图像,请使用subplot()
plt.figure()
#subplot(r,c) provide the no. of rows and columns
f, axarr = plt.subplots(4,1)
# use the created array to output your multiple images. In this case I have stacked 4 images vertically
axarr[0].imshow(v_slice[0])
axarr[1].imshow(v_slice[1])
axarr[2].imshow(v_slice[2])
axarr[3].imshow(v_slice[3])