我想生成一个facet_wrap,其中facet中的因子顺序是
基于列因子顺序之一。问题的核心是每个组都有重复的因子级别,当我绘制时只在facet_wrap
中正确排序了一个因子级别。 (见下图)
我尝试在每个组中订购因子水平,并且应在每个方面内正确排序每个因子水平。
这是我的尝试
df_pattern<- data.frame(address = rep(rep(LETTERS[1:3]),3))
df_TP <- data.frame(No=rep(seq(1:3)),
clas=c("Good","Bad","Ugly"),stringsAsFactors = F)
set.seed(12)
df_ex <- df_pattern%>%
mutate(No=rep(seq(1:3),each=3))%>%
left_join(df_TP)%>%
mutate(clas=sample(clas))%>%
group_by(No)
# address No clas
# <fctr> <int> <chr>
# 1 A 1 Good
# 2 B 1 Ugly
# 3 C 1 Ugly
# 4 A 2 Good
# 5 B 2 Ugly
# 6 C 2 Bad
# 7 A 3 Bad
# 8 B 3 Bad
# 9 C 3 Good
现在让我们尝试根据用户定义的clas列顺序对地址级别进行排序
set.seed(12)
df_ex <- df_pattern%>%
mutate(No=rep(seq(1:3),each=3))%>%
left_join(df_TP)%>%
mutate(clas=sample(clas))%>%
group_by(No)%>%
mutate(clas=factor(clas,levels=c("Good","Bad","Ugly")))%>%
mutate(address=factor(address,levels=unique(address[order(clas)])))%>%
mutate(address=as.character(address))%>%
arrange(No,clas)
address No clas
# <fctr> <int> <ord>
# 1 A 1 Good
# 2 B 1 Ugly
# 3 C 1 Ugly
# 4 A 2 Good
# 5 C 2 Bad
# 6 B 2 Ugly
# 7 C 3 Good
# 8 A 3 Bad
# 9 B 3 Bad
正如您所看到的,只有No=1
组在图中正确排序。也许这是因为数据集中只有一个因子级别。
> levels(df_ex$address)
[1] "A" "B" "C"
我们如何在每个组中订购因子水平并在facet_wrap中显示它们?根据{{1}}中的clas
级别?
谢谢!
ggplot代码
facet_wrap
答案 0 :(得分:3)
此解决方案使每个组都具有唯一性并按所需顺序排列,然后将名称更改回原始名称。
df_ex$names<-paste(df_ex$address,df_ex$clas,df_ex$No)
df_ex$names<-factor(df_ex$names,levels=c("A Good 1","B Ugly 1","C Ugly 1", "A Good 2", "C Bad 2", "B Ugly 2", "C Good 3", "A Bad 3", "B Bad 3"))
ggplot(df_ex, aes(x=names,y="",fill=clas)) + #x axis bias voltage dependence
geom_tile() +
scale_fill_manual(values=c('Good'="green","Bad"="Blue","Ugly"="black"))+
facet_wrap(~No,ncol=1,scales = "free_x")+
theme(legend.position = "top",axis.text.y = element_text(size = 20,angle = 90),axis.text.x = element_text(size=12,face="bold",colour = "black"),
axis.title.y = element_text(face="bold",size = 20, colour = "black"),
axis.title.x = element_text(face="bold",size = 20 , colour = "black"),
strip.text = element_text(size=26, face="bold"),
strip.background = element_rect(fill="#FFFF66", colour="black", size=0.5),
plot.title=element_text(face="bold",color="red",size=14),
legend.title = element_text(colour="black", size=26,face="bold"),
legend.text = element_text(colour="black", size=18))+
labs(x = "address",y = "")+
scale_x_discrete(breaks=df_ex$names, labels=df_ex$address)
答案 1 :(得分:2)
这个老问题已经有了accepted answer。但由于它被用作作为欺骗目标,我觉得有必要建议一个略微改进和更简洁的变体。
它基于ggplot2
软件包的最新增强功能,即2016年8月向CRAN发布的labels
scale_x_discrete()
参数和Hadley forcats
软件包。解决方案通过使用accepted answer中的材料来增强this answer。
df_ex
以包含一个变量,该变量保证所有方面的整体排序顺序:
library(dplyr) # version 0.5.0 used
df_ex <- df_ex %>% mutate(ordered = paste0(No, address) %>%
forcats::fct_inorder())
df_ex
的附加列现在如下所示:
address No clas ordered
<chr> <int> <fctr> <fctr>
1 A 1 Good 1A
2 B 1 Ugly 1B
3 C 1 Ugly 1C
4 A 2 Good 2A
5 C 2 Bad 2C
6 B 2 Ugly 2B
7 C 3 Good 3C
8 A 3 Bad 3A
9 B 3 Bad 3B
由于df_ex
已使用arrange()
按所需顺序排序,fct_inorder()
会返回新列ordered
,其级别与首次出现的顺序相同。
而不是address
,{x}在x轴上绘制ordered
。参数scales = "free_x"
到facet_wrap()
可确保从构面中删除未使用的级别。但是,需要通过向labels
的{{1}}参数提供命名向量来替换x轴上的标签。
scale_x_discrete()