在numpy数组中转发NaN值的最有效方法

时间:2016-12-16 19:02:19

标签: python arrays performance pandas numpy

示例问题

作为一个简单的例子,考虑如下定义的numpy数组arr

import numpy as np
arr = np.array([[5, np.nan, np.nan, 7, 2],
                [3, np.nan, 1, 8, np.nan],
                [4, 9, 6, np.nan, np.nan]])

其中arr在控制台输出中如下所示:

array([[  5.,  nan,  nan,   7.,   2.],
       [  3.,  nan,   1.,   8.,  nan],
       [  4.,   9.,   6.,  nan,  nan]])

我现在想逐行“向前填充”数组nan中的arr值。我的意思是用左边最近的有效值替换每个nan值。期望的结果如下所示:

array([[  5.,   5.,   5.,  7.,  2.],
       [  3.,   3.,   1.,  8.,  8.],
       [  4.,   9.,   6.,  6.,  6.]])

到目前为止已经尝试了

我尝试过使用for循环:

for row_idx in range(arr.shape[0]):
    for col_idx in range(arr.shape[1]):
        if np.isnan(arr[row_idx][col_idx]):
            arr[row_idx][col_idx] = arr[row_idx][col_idx - 1]

我也尝试使用pandas数据帧作为中间步骤(因为pandas数据帧有一个非常简洁的内置前向填充方法):

import pandas as pd
df = pd.DataFrame(arr)
df.fillna(method='ffill', axis=1, inplace=True)
arr = df.as_matrix()

上述两种策略都会产生预期的结果,但我一直想知道:只使用numpy矢量化操作的策略不是最有效的策略吗?

摘要

是否有另一种更有效的方法可以在numpy数组中“转发”nan值? (例如,通过使用numpy向量化操作)

更新:解决方案比较

到目前为止,我试图计算所有解决方案的时间。这是我的设置脚本:

import numba as nb
import numpy as np
import pandas as pd

def random_array():
    choices = [1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan]
    out = np.random.choice(choices, size=(1000, 10))
    return out

def loops_fill(arr):
    out = arr.copy()
    for row_idx in range(out.shape[0]):
        for col_idx in range(1, out.shape[1]):
            if np.isnan(out[row_idx, col_idx]):
                out[row_idx, col_idx] = out[row_idx, col_idx - 1]
    return out

@nb.jit
def numba_loops_fill(arr):
    '''Numba decorator solution provided by shx2.'''
    out = arr.copy()
    for row_idx in range(out.shape[0]):
        for col_idx in range(1, out.shape[1]):
            if np.isnan(out[row_idx, col_idx]):
                out[row_idx, col_idx] = out[row_idx, col_idx - 1]
    return out

def pandas_fill(arr):
    df = pd.DataFrame(arr)
    df.fillna(method='ffill', axis=1, inplace=True)
    out = df.as_matrix()
    return out

def numpy_fill(arr):
    '''Solution provided by Divakar.'''
    mask = np.isnan(arr)
    idx = np.where(~mask,np.arange(mask.shape[1]),0)
    np.maximum.accumulate(idx,axis=1, out=idx)
    out = arr[np.arange(idx.shape[0])[:,None], idx]
    return out

后跟此控制台输入:

%timeit -n 1000 loops_fill(random_array())
%timeit -n 1000 numba_loops_fill(random_array())
%timeit -n 1000 pandas_fill(random_array())
%timeit -n 1000 numpy_fill(random_array())

导致此控制台输出:

1000 loops, best of 3: 9.64 ms per loop
1000 loops, best of 3: 377 µs per loop
1000 loops, best of 3: 455 µs per loop
1000 loops, best of 3: 351 µs per loop

7 个答案:

答案 0 :(得分:29)

这是一种方法 -

mask = np.isnan(arr)
idx = np.where(~mask,np.arange(mask.shape[1]),0)
np.maximum.accumulate(idx,axis=1, out=idx)
out = arr[np.arange(idx.shape[0])[:,None], idx]

如果您不想创建另一个数组,只需填写arr本身的NaN,请用此替换最后一步 -

arr[mask] = arr[np.nonzero(mask)[0], idx[mask]]

示例输入,输出 -

In [179]: arr
Out[179]: 
array([[  5.,  nan,  nan,   7.,   2.,   6.,   5.],
       [  3.,  nan,   1.,   8.,  nan,   5.,  nan],
       [  4.,   9.,   6.,  nan,  nan,  nan,   7.]])

In [180]: out
Out[180]: 
array([[ 5.,  5.,  5.,  7.,  2.,  6.,  5.],
       [ 3.,  3.,  1.,  8.,  8.,  5.,  5.],
       [ 4.,  9.,  6.,  6.,  6.,  6.,  7.]])

答案 1 :(得分:4)

使用Numba。这应该会带来显着的加速:

import numba
@numba.jit
def loops_fill(arr):
    ...

答案 2 :(得分:1)

对于那些对在填空后领先np.nan的问题感兴趣的人,可以进行以下工作:

mask = np.isnan(arr)
first_non_zero_idx = (~mask!=0).argmax(axis=1) #Get indices of first non-zero values
arr = [ np.hstack([
             [arr[i,first_nonzero]]*(first_nonzero), 
             arr[i,first_nonzero:]])
             for i, first_nonzero in enumerate(first_non_zero_idx) ]

答案 3 :(得分:1)

对于那些来这里寻找NaN值向后填充的人,我修改了the solution provided by Divakar above来做到这一点。诀窍是,您必须使用除最大值以外的最小值对反向数组进行累加。

代码如下:



# As provided in the answer by Divakar
def ffill(arr):
    mask = np.isnan(arr)
    idx = np.where(~mask, np.arange(mask.shape[1]), 0)
    np.maximum.accumulate(idx, axis=1, out=idx)
    out = arr[np.arange(idx.shape[0])[:,None], idx]
    return out

# My modification to do a backward-fill
def bfill(arr):
    mask = np.isnan(arr)
    idx = np.where(~mask, np.arange(mask.shape[1]), mask.shape[0] + 1)
    idx = np.minimum.accumulate(idx[:, ::-1], axis=1)[:, ::-1]
    out = arr[np.arange(idx.shape[0])[:,None], idx]
    return out


# Test both functions
arr = np.array([[5, np.nan, np.nan, 7, 2],
                [3, np.nan, 1, 8, np.nan],
                [4, 9, 6, np.nan, np.nan]])
print('Array:')
print(arr)

print('\nffill')
print(ffill(arr))

print('\nbfill')
print(bfill(arr))

输出:

Array:
[[ 5. nan nan  7.  2.]
 [ 3. nan  1.  8. nan]
 [ 4.  9.  6. nan nan]]

ffill
[[5. 5. 5. 7. 2.]
 [3. 3. 1. 8. 8.]
 [4. 9. 6. 6. 6.]]

bfill
[[ 5.  7.  7.  7.  2.]
 [ 3.  1.  1.  8. nan]
 [ 4.  9.  6. nan nan]]

答案 4 :(得分:1)

我喜欢Divakar关于纯粹的numpy的回答。 这是n维数组的通用函数:

def np_ffill(arr, axis):
    idx_shape = tuple([slice(None)] + [np.newaxis] * (len(arr.shape) - axis - 1))
    idx = np.where(~np.isnan(arr), np.arange(arr.shape[axis])[idx_shape], 0)
    np.maximum.accumulate(idx, axis=axis, out=idx)
    slc = [np.arange(k)[tuple([slice(None) if dim==i else np.newaxis
        for dim in range(len(arr.shape))])]
        for i, k in enumerate(arr.shape)]
    slc[axis] = idx
    return arr[tuple(slc)]

AFIK大熊猫只能使用二维空间,尽管需要多索引来弥补。实现此目的的唯一方法是将DataFrame展平,取消堆叠所需的级别,重新堆叠并最终重新成形为原始形状。涉及到熊猫分拣的这种拆堆/堆垛/整形只是实现相同结果的不必要的开销。

测试:

def random_array(shape):
    choices = [1, 2, 3, 4, np.nan]
    out = np.random.choice(choices, size=shape)
    return out

ra = random_array((2, 4, 8))
print('arr')
print(ra)
print('\nffull')
print(np_ffill(ra, 1))
raise SystemExit

输出:

arr
[[[ 3. nan  4.  1.  4.  2.  2.  3.]
  [ 2. nan  1.  3. nan  4.  4.  3.]
  [ 3.  2. nan  4. nan nan  3.  4.]
  [ 2.  2.  2. nan  1.  1. nan  2.]]

 [[ 2.  3.  2. nan  3.  3.  3.  3.]
  [ 3.  3.  1.  4.  1.  4.  1. nan]
  [ 4.  2. nan  4.  4.  3. nan  4.]
  [ 2.  4.  2.  1.  4.  1.  3. nan]]]

ffull
[[[ 3. nan  4.  1.  4.  2.  2.  3.]
  [ 2. nan  1.  3.  4.  4.  4.  3.]
  [ 3.  2.  1.  4.  4.  4.  3.  4.]
  [ 2.  2.  2.  4.  1.  1.  3.  2.]]

 [[ 2.  3.  2. nan  3.  3.  3.  3.]
  [ 3.  3.  1.  4.  1.  4.  1.  3.]
  [ 4.  2.  1.  4.  4.  3.  1.  4.]
  [ 2.  4.  2.  1.  4.  1.  3.  4.]]]

答案 5 :(得分:1)

我喜欢 Divakar 的回答,但它不适用于一行以 np.nan 开头的边缘情况,例如下面的 arr

arr = np.array([[9, np.nan, 4, np.nan, 6, 6, 7, 2, 3, np.nan],
[ np.nan, 5, 5, 6, 5, 3, 2, 1, np.nan, 10]])

使用 Divakar 代码的输出将是:

[[ 9.  9.  4.  4.  6.  6.  7.  2.  3.  3.]
 [nan  4.  5.  6.  5.  3.  2.  1.  1. 10.]]

Divakar 的代码可以稍微简化一下,简化版同时解决了这个问题:

arr[np.isnan(arr)] = arr[np.nonzero(np.isnan(arr))[0], np.nonzero(np.isnan(arr))[1]-1]

答案 6 :(得分:-1)

我使用了 np.nan_to_num 示例:

data = np.nan_to_num(data, data.mean())

参考:Numpy document