汇总pandas

时间:2016-12-16 14:56:00

标签: python pandas dataframe

这是我的pandas.DataFrame:

    a  b
0   1  5
1   1  7
2   2  3
3   1  3
4   2  5
5   2  6
6   1  4
7   1  3
8   2  7
9   2  4
10   2  5

我想创建一个新的DataFrame,它将包含按'a'分组的数据,并包含每个组最大3个值的总和。

这是我期望的输出。第1组的最大3个'b'值分别为7,5和4,第2组分别为7,6和5。

a
1  16
2  18

df.groupby('a')['b'].nlargest(3)

给我这个输出,

 a    
 1  1     7
    0     5
    6     4
 2  8     7
    5     6
    10    5

  df.groupby('a')['b'].nlargest(3).sum()

给了我总和34(16 + 18)。

如何使用pandas.DataFrame获得预期的输出?

谢谢!

2 个答案:

答案 0 :(得分:2)

使用apply是一种方法。

In [41]: df.groupby('a')['b'].apply(lambda x: x.nlargest(3).sum())
Out[41]:
a
1    16
2    18
Name: b, dtype: int64

计时

In [42]: dff = pd.concat([df]*1000).reset_index(drop=True)

In [43]: dff.shape
Out[43]: (11000, 2)

In [44]: %timeit dff.groupby('a')['b'].apply(lambda x: x.nlargest(3).sum())
100 loops, best of 3: 2.44 ms per loop

In [45]: %timeit dff.groupby('a')['b'].nlargest(3).groupby(level='a').sum()
100 loops, best of 3: 3.44 ms per loop

答案 1 :(得分:0)

使用groupby的{​​{1}}加倍a

MultiIndex

但对我来说更好:

s = df.groupby('a')['b'].nlargest(3).groupby(level='a').sum()
print (s)
a
1    16
2    18
Name: b, dtype: int64

谢谢Nickil Maveli

编辑:如果再次需要热门df.groupby('a')['b'].nlargest(3).sum(level=0) ,请使用Series.nlargest

3

<强>计时

df = pd.DataFrame({'a': [1, 1, 2, 3, 2, 2, 1, 3, 4, 3, 4],
                   'b': [5, 7, 3, 3, 5, 6, 4, 3, 7, 4, 5]})

print (df)
    a  b
0   1  5
1   1  7
2   2  3
3   3  3
4   2  5
5   2  6
6   1  4
7   3  3
8   4  7
9   3  4
10  4  5


df = df.groupby('a')['b'].nlargest(3).sum(level=0).nlargest(3)
print (df)
a
1    16
2    14
4    12
Name: b, dtype: int64
np.random.seed(123)
N = 1000000

L2 = np.arange(100)

df = pd.DataFrame({'b':np.random.randint(20, size=N), 
                   'a': np.random.choice(L2, N)})

print (df)

In [22]: %timeit df.groupby('a')['b'].apply(lambda x: x.nlargest(3).sum())
10 loops, best of 3: 125 ms per loop

In [23]: %timeit df.groupby('a')['b'].nlargest(3).groupby(level='a').sum()
10 loops, best of 3: 121 ms per loop

In [29]: %timeit df.groupby('a')['b'].nlargest(3).sum(level=0)
10 loops, best of 3: 121 ms per loop
np.random.seed(123)
N = 1000000

L2 = list('abcdefghijklmno')

df = pd.DataFrame({'b':np.random.randint(20, size=N), 
                   'a': np.random.choice(L2, N)})

print (df)

In [19]: %timeit df.groupby('a')['b'].apply(lambda x: x.nlargest(3).sum())
10 loops, best of 3: 97.9 ms per loop

In [20]: %timeit df.groupby('a')['b'].nlargest(3).groupby(level='a').sum()
10 loops, best of 3: 96.5 ms per loop

In [31]: %timeit df.groupby('a')['b'].nlargest(3).sum(level=0)
10 loops, best of 3: 97.9 ms per loop