我在列上有一个DataFrame
MultiIndex
(可以说是3级):
MultiIndex(levels=[['BA-10.0', 'BA-2.5', ..., 'p'], ['41B004', '41B005', ..., 'T1M003', 'T1M011'], [25, 26, ..., 276, 277]],
labels=[[0, 0, 0, ..., 18, 19, 19], [4, 5, 6,..., 14, 12, 13], [24, 33, 47, ..., 114, 107, 113]],
names=['measurandkey', 'sitekey', 'channelid'])
当我通过第一级并且产生DataFrame
的子集时:
def cluster(df):
for key in df.columns.levels[0]:
yield df[key]
for subdf in cluster(df):
print(subdf.columns)
列索引确实已经丢失了第一个级别,但MultiIndex
仍然包含对子级别中所有其他键的引用,即使它们在子集中缺失。
MultiIndex(levels=[['41B004', '41B005', '41B006', '41B008', '41B011', '41MEU1', '41N043', '41R001', '41R002', '41R012', '41WOL1', '41WOL2', 'T1M001', 'T1M003', 'T1M011'], [25, 26, 27, 28, 30, 31, 32, 3, ....
labels=[[4, 5, 6, 7, 9, 10], [24, 33, 47, 61, 83, 98]],
names=['sitekey', 'channelid'])
如何强制subdf
仅使用存在的键更新其MultiIndex列?
答案 0 :(得分:1)
def cluster(df):
for key in df.columns.levels[0]:
d = df[key]
d.columns = pd.MultiIndex.from_tuples(d.columns.to_series())
yield d