我想基于SQL case语句加入两个dataFrame,如下所示。请告诉我处理这种情况的最佳方法是什么?
from df1
left join df2 d
on d."Date1" <= Case when v."DATE2" >= v."DATE3" then df1."col1" else df1."col2" end
答案 0 :(得分:0)
我个人会把它放到一个返回布尔值的UDF中。因此,业务逻辑将最终出现在Python代码中,SQL将保持干净:
>>> from pyspark.sql.types import BooleanType
>>> def join_based_on_dates(left_date, date0, date1, col0, col1):
>>> if(date0 >= date1):
>>> right_date = col0
>>> else:
>>> right_date = col1
>>> return left_date <= right_date
>>> sqlContext.registerFunction("join_based_on_dates", join_based_on_dates, BooleanType())
>>> join_based_on_dates("2016-01-01", "2017-01-01", "2018-01-01", "res1", "res2");
True
>>> sqlContext.sql("SELECT join_based_on_dates('2016-01-01', '2017-01-01', '2018-01-01', 'res1', 'res2')").collect();
[Row(_c0=True)]
您的查询将最终结果如下:
FROM df1
LEFT JOIN df2 ON join_based_on_dates('2016-01-01', '2017-01-01', '2018-01-01', 'res1', 'res2')
希望这有帮助,与Spark玩得开心!