我试图开发一个简单的应用程序,闪亮,预测乘客在泰坦尼克号存活的概率,给定一定的年龄,等级,票价等。我希望这些变量是动态的,并希望计算预测的生存概率使用底层插入符号模型。
运行此代码时,收到以下错误消息:
警告:[.data.frame:未定义列选择堆栈跟踪时出错 (最里面的): 70:[。data.frame 69:[ 68:横扫 67:predict.preProcess 66:预测 65:probFunction 64:predict.train 63:预测 62:预测 61:is.data.frame 60:data.matrix 59:observerFunc [#17] 4: 3:do.call 2:print.shiny.appobj 1:错误:[on_request_read]连接由对等方重置
我的代码如下。是什么原因造成了这个错误?非常感谢。
require(shiny)
require(plyr)
require(dplyr)
require(ggplot2)
require(caret)
require(xgboost)
require(titanic)
df=na.omit(titanic_train)
y=data.matrix(select(df, Survived))
y[y==0]="N"
y[y==1]="Y"
x=data.matrix(select(df, Pclass, Age, SibSp, Parch, Fare))
tCtrl <- trainControl(method = "repeatedcv", number = 3, repeats=3, summaryFunction = twoClassSummary, verbose=TRUE, classProbs = TRUE)
fit_xgbTree= train(x, y, method = "xgbTree" , family= "binomial", trControl = tCtrl, metric = "ROC", preProc = c("center", "scale"))
ui = pageWithSidebar(
headerPanel("Titanic"),
sidebarPanel(
radioButtons("Pclass", "Passenger Class", choices=c("1", "2", "3"),selected = "1", inline = TRUE,width = NULL),
sliderInput("Age", "Passenger Age", min=0, max=80, value=30),
radioButtons("SibSp", "SibSp", choices=c("0", "1", "2", "3", "4", "5")),
radioButtons("Parch", "Parch", choices=c("0", "1", "2", "3", "4", "5", "6")),
sliderInput("Fare", "Passenger Fare", min=0, max=520, value=35)
),
mainPanel(
dataTableOutput('testTable'),
textOutput('outputBox')
)
)
server=function(input, output){
values <- reactiveValues()
newEntry <- observe({ # use observe pattern
x=as.data.frame(matrix(0, nrow=1, ncol=5))
colnames(x)=c("Pclass", "Age", "SibSp", "Parch", "Fare")
x[1,1]=as.numeric(input$Pclass)
x[1,2]=input$Age
x[1,3]=as.numeric(input$SibSp)
x[1,4]=as.numeric(input$Parch)
x[1,5]=input$Fare
pred <- data.matrix(predict(object=fit_xgbTree, x, type="prob")[,2])
isolate(values$df <- x)
#isolate(values$df2 <- x)
})
output$testTable <- renderDataTable({values$df})
}
shinyApp(ui=ui, server=server)
答案 0 :(得分:2)
服务器中的以下修改对我来说非常适合(添加生存概率列,我认为这就是你想要的):
server=function(input, output){
values <- reactiveValues()
newEntry <- observe({ # use observe pattern
x=as.data.frame(matrix(0, nrow=1, ncol=6))
colnames(x)=c("Pclass", "Age", "SibSp", "Parch", "Fare", "SurvProb")
x[1,1]=as.numeric(input$Pclass)
x[1,2]=input$Age
x[1,3]=as.numeric(input$SibSp)
x[1,4]=as.numeric(input$Parch)
x[1,5]=input$Fare
pred <- data.matrix(predict(object=fit_xgbTree, x[-length(x)], type="prob")[,2])
x[1,6] <- round(pred,2)
isolate(values$df <- x)
#isolate(values$df2 <- x)
})
output$testTable <- renderDataTable({values$df})
}