无法在Linux中构建ParagraphVectors

时间:2016-12-15 20:03:29

标签: linux ubuntu deep-learning deeplearning4j nd4j

我正在使用Deeplearning4j的Doc2Vec算法,当我在Windows 10 PC上运行它时工作正常,但是当我尝试在Linux机器上运行时,我收到以下错误:

java.lang.NoClassDefFoundError: Could not initialize class org.nd4j.linalg.factory.Nd4j
at org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable$Builder.<init>(InMemoryLookupTable.java:581) ~[run.jar:?]
at org.deeplearning4j.models.sequencevectors.SequenceVectors$Builder.presetTables(SequenceVectors.java:801) ~[run.jar:?]
at org.deeplearning4j.models.paragraphvectors.ParagraphVectors$Builder.build(ParagraphVectors.java:663) ~[run.jar:?]

我在几台Linux机器上试过这个,这两台机器都运行Xubuntu并具有sudo权限

以下是创建ParagraphVectors的代码:     InputStream = new ByteArrayInputStream(baos.toByteArray());

  LabelAwareSentenceIterator iter;
  iter = new LabelAwareListSentenceIterator(is, DELIM);
  iter.setPreProcessor(new SentencePreProcessor() {
    @Override
    public String preProcess(String sentence) {
      return new InputHomogenization(sentence).transform();
    }
  });

  TokenizerFactory tokenizerFactory = new DefaultTokenizerFactory();
  vec = new ParagraphVectors.Builder().minWordFrequency(minWordFrequency).batchSize(batchSize)
      .iterations(iterations).layerSize(layerSize).stopWords(stopWords).windowSize(windowSize)
      .learningRate(learningRate).tokenizerFactory(tokenizerFactory).iterate(iter).build();
  vec.fit();

这是我的pom.xml(版本都是0.7.1,但我一直在使用0.4-rc3.9并得到同样的错误):

<dependency>
        <groupId>org.deeplearning4j</groupId>
        <artifactId>deeplearning4j-ui-model</artifactId>
        <version>${dl4j.version}</version>
        <exclusions>
            <exclusion>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
            </exclusion>
            <exclusion>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
    <dependency>
        <groupId>org.deeplearning4j</groupId>
        <artifactId>deeplearning4j-nlp</artifactId>
        <version>${dl4j.version}</version>
        <exclusions>
            <exclusion>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
            </exclusion>
            <exclusion>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
    <dependency>
        <groupId>org.nd4j</groupId>
        <artifactId>nd4j-native</artifactId>
        <version>${nd4j.version}</version>
        <exclusions>
            <exclusion>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
            </exclusion>
            <exclusion>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.datavec/datavec-api -->
    <dependency>
        <groupId>org.datavec</groupId>
        <artifactId>datavec-api</artifactId>
        <version>${nd4j.version}</version>
    </dependency>

1 个答案:

答案 0 :(得分:1)

首先要坚持使用最新版本。你能发布完整的堆栈跟踪吗?这肯定是不是的根本原因。也许尝试使用nd4j-native-platform代替?通常这是缺少原生工件的问题。