我在data.frame中有两个变量“c”和“q”。 “c”是0到1之间的数字(贫困程度),“q”表示家庭(或受试者)是贫困,1或非贫困是零。 如何计算贫困家庭的“c”平均值(q = 1)。
重要细节:我有一个国家数据库,我希望这个结果适用于地区。
我正在使用这样的svyby
:
svyby( ~q , ~region , design = base2015_pos , na.rm=TRUE, svytotal)
所以就这样,R给了我一个地区的贫困人数,我现在不需要这个。我需要按地区划分一个子集的平均值(见上图)。
structure(list(domicilio = c(11000015001, 11000015003, 11000015004), agua = c(0, 0, 6), ind_agua = c(0, 0, 1), esgoto = c(1, 1, 6), ind_cond_sanitaria = c(1, 1, 1), lixo = c(0, 0, 0), ind_lixo = c(0, 0, 0), luz = c(0, 0, 0), ind_iluminacao = c(0, 0, 0), ativos = c(0, 0, 0), ind_ativos = c(0, 0, 0), emprego = c(0, 0, 0), ind_emprego = c(0, 0, 0), renda = c(0, 0, 0), ind_renda = c(0, 0, 0), casa = c(1, 1, 0), ind_riqueza = c(1, 1, 0), anos = c(0, 0, 0), ind_estudo = c(0, 0, 0), ler = c(0, 0, 0), ind_alfabetizado = c(0, 0, 0), peso = c(270, 270, 270), sexo = c(0, 1, 1), uf = c("11", "11", "11"), v4609 = c("001772940", "001772940", "001772940"), v4617 = c(110001, 110001, 110001), v4618 = c(1, 1, 1), pre_wgt = c(200, 200, 200), one = c(1L,
1L, 1L), region = c("1", "1", "1"), c = c(0.2, 0.2, 0.2), q = c(0, 0, 0)), .Names = c("domicilio", "agua", "ind_agua", "esgoto", "ind_cond_sanitaria", "lixo", "ind_lixo", "luz", "ind_iluminacao","ativos", "ind_ativos", "emprego", "ind_emprego", "renda", "ind_renda", "casa", "ind_riqueza", "anos", "ind_estudo", "ler", "ind_alfabetizado","peso", "sexo", "uf", "v4609", "v4617", "v4618", "pre_wgt", "one", "region", "c", "q"), row.names = c(NA, 3L), class = "data.frame")
答案 0 :(得分:0)
aggregate(df$c, by=list(df$q), FUN=mean)
答案 1 :(得分:0)
这是另一种可能性。为了说明,根据您的参数创建数据集:
this.myVar
现在通过提取匹配q = 1的所有行并在结果输出中计算列c的平均值来进行子集化:
set.seed(787)
dat.a <-runif(n=10,min=0,max=1)
dat.b <-rbinom(n=10, size=1, prob=0.5)
dat.1 <-data.frame(matrix(c(dat.a, dat.b), ncol=2, nrow=10))
colnames(dat.1) <-c("c","q")
dat.1
c q
1 0.35326234 1
2 0.45277055 0
3 0.29505270 0
4 0.78723105 1
5 0.95915348 1
6 0.17505284 0
7 0.79693672 0
8 0.01648420 1
9 0.02706417 0
10 0.93996311 1
答案 2 :(得分:0)
# complex sample survey design
library(survey)
# your data.frame
x <- structure(list(domicilio = c(11000015001, 11000015003, 11000015004), agua = c(0, 0, 6), ind_agua = c(0, 0, 1), esgoto = c(1, 1, 6), ind_cond_sanitaria = c(1, 1, 1), lixo = c(0, 0, 0), ind_lixo = c(0, 0, 0), luz = c(0, 0, 0), ind_iluminacao = c(0, 0, 0), ativos = c(0, 0, 0), ind_ativos = c(0, 0, 0), emprego = c(0, 0, 0), ind_emprego = c(0, 0, 0), renda = c(0, 0, 0), ind_renda = c(0, 0, 0), casa = c(1, 1, 0), ind_riqueza = c(1, 1, 0), anos = c(0, 0, 0), ind_estudo = c(0, 0, 0), ler = c(0, 0, 0), ind_alfabetizado = c(0, 0, 0), peso = c(270, 270, 270), sexo = c(0, 1, 1), uf = c("11", "11", "11"), v4609 = c("001772940", "001772940", "001772940"), v4617 = c(110001, 110001, 110001), v4618 = c(1, 1, 1), pre_wgt = c(200, 200, 200), one = c(1L,
1L, 1L), region = c("1", "1", "1"), c = c(0.2, 0.2, 0.2), q = c(0, 0, 0)), .Names = c("domicilio", "agua", "ind_agua", "esgoto", "ind_cond_sanitaria", "lixo", "ind_lixo", "luz", "ind_iluminacao","ativos", "ind_ativos", "emprego", "ind_emprego", "renda", "ind_renda", "casa", "ind_riqueza", "anos", "ind_estudo", "ler", "ind_alfabetizado","peso", "sexo", "uf", "v4609", "v4617", "v4618", "pre_wgt", "one", "region", "c", "q"), row.names = c(NA, 3L), class = "data.frame")
# your survey.design (this is not the correct svydesign statement, please follow the directions specific to your data set)
y <- svydesign( ~ 1 , data = x , weights = ~ pre_wgt )
# your desired subset
z <- subset( y , q == 1 )
# your desired mean
svyby( ~ c , ~ region , z , svymean )