如何在倒数第二个管道之后删除管道分隔文件中的所有内容?喜欢这条线
David|3456|ACCOUNT|MALFUNCTION|CANON|456
结果应该是
David|3456|ACCOUNT|MALFUNCTION
答案 0 :(得分:2)
在每行末尾替换mat <- matrix(unlist(lstVec), ncol = 2, byrow = TRUE)
:
|(string without pipe)|(string without pipe)
答案 1 :(得分:1)
使用async Task methodA()
{
while (something)
{
Task b = methodB();
// do stuff
await b;
}
}
,例如
awk
(或)使用awk -F'|' 'BEGIN{OFS="|"}{NF=NF-2; print}' inputfile
David|3456|ACCOUNT|MALFUNCTION
如果您知道总数的列数,即{e cut
6 -> 4
答案 2 :(得分:0)
我将使用的命令是
def estimate_sigma(hist):
bin_edges = np.arange(len(hist))
bin_centres = bin_edges + 0.5
# Define model function to be used to fit to the data above:
def gauss(x, *gparams):
g_count = len(gparams)/3
def gauss_impl(x, A, mu, sigma):
return A*numpy.exp(-(x-mu)**2/(2.*sigma**2))
res = np.zeros(len(x))
for gi in range(g_count):
res += gauss_impl(x, gparams[gi*3], gparams[gi*3+1], gparams[gi*3+2])
return res
# p0 is the initial guess for the fitting coefficients (A, mu and sigma above)
curves_count = 4
p0 = np.tile([1., 0., 1.], curves_count)
coeff, var_matrix = curve_fit(gauss, bin_centres, hist, p0=p0)
# Get the fitted curve
hist_fit = gauss(bin_centres, *coeff)
plt.plot(bin_centres, hist, label='Test data')
plt.plot(bin_centres, hist_fit, label='Fitted data')
# Finally, lets get the fitting parameters, i.e. the mean and standard deviation:
print coeff
plt.show()
答案 3 :(得分:0)
纯粹的Bash解决方案:
while IFS= read -r line || [[ -n $line ]] ; do
printf '%s\n' "${line%|*|*}"
done <inputfile
有关while
循环如何工作的详细信息,请参阅Reading input files by line using read command in shell scripting skips last line(特别是answer by Jahid)。
有关${line%|*|*}
的信息,请参阅pattern matching in Bash。