我正在尝试在数据集上创建分类器。我第一次使用XGBoost:
import xgboost as xgb
import pandas as pd
import numpy as np
train = pd.read_csv("train_users_processed_onehot.csv")
labels = train["Buy"].map({"Y":1, "N":0})
features = train.drop("Buy", axis=1)
data_dmat = xgb.DMatrix(data=features, label=labels)
params={"max_depth":5, "min_child_weight":2, "eta": 0.1, "subsamples":0.9, "colsample_bytree":0.8, "objective" : "binary:logistic", "eval_metric": "logloss"}
rounds = 180
result = xgb.cv(params=params, dtrain=data_dmat, num_boost_round=rounds, early_stopping_rounds=50, as_pandas=True, seed=23333)
print result
结果是:
test-logloss-mean test-logloss-std train-logloss-mean
0 0.683539 0.000141 0.683407
179 0.622302 0.001504 0.606452
我们可以看到它大约是0.622;
但是当我使用完全相同的参数切换到sklearn
时(我认为),结果却截然不同。以下是我的代码:
from sklearn.model_selection import cross_val_score
from xgboost.sklearn import XGBClassifier
import pandas as pd
train_dataframe = pd.read_csv("train_users_processed_onehot.csv")
train_labels = train_dataframe["Buy"].map({"Y":1, "N":0})
train_features = train_dataframe.drop("Buy", axis=1)
estimator = XGBClassifier(learning_rate=0.1, n_estimators=190, max_depth=5, min_child_weight=2, objective="binary:logistic", subsample=0.9, colsample_bytree=0.8, seed=23333)
print cross_val_score(estimator, X=train_features, y=train_labels, scoring="neg_log_loss")
,结果是:[-4.11429976 -2.08675843 -3.27346662]
,在逆转后仍远离0.622。
我向cross_val_score
抛出了一个断点,并且看到分类器通过尝试预测测试集中的每个元组为负值并且概率为0.99来做出疯狂的预测。
我想知道我哪里出错了。有人能帮助我吗?
答案 0 :(得分:4)
这个问题有点陈旧,但我今天遇到了问题并弄清楚为什么xgboost.cv
和sklearn.model_selection.cross_val_score
给出的结果完全不同。
默认情况下,cross_val_score使用其shuffle参数为False的KFold
或StratifiedKFold
,因此不会从数据中随机抽取折叠。
所以,如果你这样做,那么你应该得到相同的结果,
cross_val_score(estimator, X=train_features, y=train_labels, scoring="neg_log_loss", cv = StratifiedKFold(shuffle=True, random_state=23333))
将random state
放在StratifiedKfold
和seed
xgboost.cv
中,以获得完全可重复的结果。