我正在寻找一种在一天内可视化库存的方法。数据集如下所示,其中包含以下最后两列的摘要:
Time Price Inventory Duration
1 9/1/2016 9:25:06 AM 13.960 318 0
2 9/1/2016 9:36:42 AM 13.980 106 696
3 9/1/2016 9:40:52 AM 13.990 -599 250
4 9/1/2016 9:52:54 AM 14.015 68 722
5 9/1/2016 9:52:54 AM 14.015 321 0
6 9/1/2016 9:54:17 AM 14.010 74 83
广告
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1120.00 -98.75 9.00 0.00 100.00 1988.00
持续时间
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 40.25 205.50 2100.00 529.00 272700.00
我希望通过显示在各种库存水平上花费的时间来可视化数据。你会推荐什么功能呢?到目前为止,我只找到了基于频率的直方图,而不是时间。我的预期结果看起来与此相似:
https://postimg.org/image/z074waij1/
提前致谢
答案 0 :(得分:0)
我根据自己的需要编写了以下功能。希望它有所帮助
inv.barplot.IDs <- function(inv.list, IDs = 1:1620)
{
# Subset according to the IDs
myinvs <- as.data.frame(matrix(nrow = 0, ncol = 14))
names(myinvs) <- inv.names
Volume <- Duration <- vector("numeric")
for (i in IDs)
{
#myinvs <- rbind(myinvs, inv.list[[i]])
Volume <- c(Volume, as.numeric(inv.list[[i]]$Volume))
Duration <- c(Duration, as.numeric(inv.list[[i]]$Duration))
}
# Design a sequence of skatules
minimum <- min(Volume)
maximum <- max(Volume)
width <- (maximum + abs(minimum)) / 18
width <- round(width, -1)
seq.pos <- seq(width, maximum + width, by = width)
seq.neg <- - seq(0, abs(minimum) + width, by = width)
seq <- c(rev(seq.neg), seq.pos)
# Categorize the dataframe (new column)
Skatule <- numeric(length = length(Volume))
for (i in 1:length(Volume))
{
Skatule[i] <- seq[head(which(seq > Volume[i]), 1) - 1]
}
barplot.data <- tapply(Duration, Skatule, sum)
# Save the barplot
#jpeg(filename = file.barplot, width = 480 * (16/9))
inv.barplot <- barplot(barplot.data, border = NA, ylim = c(0, max(barplot.data)), main = "Total time spent on various inventory levels", xlab = "Inventory", ylab = "Log of Hours")
#print(inv.barplot)
#dev.off()
}