为了添加许多优秀的例子,我试图将我的数据重塑为我想要的格式。
我目前拥有按客户,购买类别和日期编制索引的数据,并对每列的每个日内时段进行观察:
我希望按购买类别进行汇总,然后重新整形,以便我的数据按日期和时间编制索引,而客户则显示在列中。
实现此目的的simplest way是什么?
在文本形式中,原始数据如下所示:
<table><tbody><tr><th>Customer</th><th>Purchase Category</th><th>date</th><th>00:30</th><th>01:00</th><th>01:30</th></tr><tr><td>1</td><td>A</td><td>01/07/2012</td><td>1.25</td><td>1.25</td><td>1.25</td></tr><tr><td>1</td><td>B</td><td>01/07/2012</td><td>0.855</td><td>0.786</td><td>0.604</td></tr><tr><td>1</td><td>C</td><td>01/07/2012</td><td>0</td><td>0</td><td>0</td></tr><tr><td>1</td><td>A</td><td>02/07/2012</td><td>1.25</td><td>1.25</td><td>1.125</td></tr><tr><td>1</td><td>B</td><td>02/07/2012</td><td>0.309</td><td>0.082</td><td>0.059</td></tr><tr><td>1</td><td>C</td><td>02/07/2012</td><td>0</td><td>0</td><td>0</td></tr><tr><td>2</td><td>A</td><td>01/07/2012</td><td>0</td><td>0</td><td>0</td></tr><tr><td>2</td><td>B</td><td>01/07/2012</td><td>0.167</td><td>0.108</td><td>0.119</td></tr><tr><td>2</td><td>C</td><td>01/07/2012</td><td>0</td><td>0</td><td>0</td></tr><tr><td>2</td><td>A</td><td>02/07/2012</td><td>0</td><td>0</td><td>0</td></tr><tr><td>2</td><td>B</td><td>02/07/2012</td><td>0.11</td><td>0.109</td><td>0.123</td></tr></tbody></table>
&#13;
答案 0 :(得分:2)
我认为您需要groupby
汇总sum
并重新制作stack
和unstack
。最后pop
列level_1
,添加到date
并转换to_datetime
:
print (df)
Customer Purchase Category date 00:30 01:00 01:30
0 1 A 01/07/2012 1.250 1.250 1.250
1 1 B 01/07/2012 0.855 0.786 0.604
2 1 C 01/07/2012 0.000 0.000 0.000
3 1 A 02/07/2012 1.250 1.250 1.125
4 1 B 02/07/2012 0.309 0.082 0.059
5 1 C 02/07/2012 0.000 0.000 0.000
6 2 A 01/07/2012 0.000 0.000 0.000
7 2 B 01/07/2012 0.167 0.108 0.119
8 2 C 01/07/2012 0.000 0.000 0.000
9 2 A 02/07/2012 0.000 0.000 0.000
10 2 B 02/07/2012 0.110 0.109 0.123
df1 = df.groupby(['Customer','date']).sum().stack().unstack(0).reset_index()
df1.date = pd.to_datetime(df1.date + df1.pop('level_1'), format='%d/%m/%Y%H:%M')
print (df1)
Customer date 1 2
0 2012-07-01 00:30:00 2.105 0.167
1 2012-07-01 01:00:00 2.036 0.108
2 2012-07-01 01:30:00 1.854 0.119
3 2012-07-02 00:30:00 1.559 0.110
4 2012-07-02 01:00:00 1.332 0.109
5 2012-07-02 01:30:00 1.184 0.123