我希望在课程<div>
上使用课程.mine
和使其成为background: blue
。
我怎样才能做到这一点?
HTML:
<div class="container">
<div class="row">
<div class="col-sm-4">
<h2>Meet Momẽnto.</h2>
</div>
<div class="col-sm-8 my_menu">
<nav class="navbar navbar-default">
<!-- for collapsible button making -->
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#mynavbar">
<!-- for making icon bar -->
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- in order to collapse we will wrap ul in to div tag-->
<div class="mine">
<ul class="nav navbar-nav pull-right">
<li class="active"> <a href="#">Home</a></li>
<li> <a href="#">Slider</a></li>
<li> <a href="#">Portfolio</a></li>
<li> <a href="#">Pages</a></li>
<li> <a href="#">Blog</a></li>
<li> <a href="#">Shortcut</a></li>
</ul>
</div>
</nav>
</div>
</div>
</div>
CSS:
.container .row .my_menu .navbar-default .mine{
background:blue;
}
答案 0 :(得分:0)
如果你正在使用twitter bootstrap,那么在这种情况下你的css可以重叠使用重要的!
#include <iostream>
#include <vector>
// PCL
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/keypoints/iss_3d.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/shot.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/registration/correspondence_estimation.h>
#include <pcl/registration/correspondence_rejection_one_to_one.h>
#include <pcl/registration/correspondence_rejection_sample_consensus.h>
#include <pcl/registration/transformation_estimation_svd.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/registration/icp.h>
#include <pcl/features/fpfh.h>
using namespace pcl;
using namespace pcl::io;
pcl::visualization::PCLVisualizer viewer("Cloud Viewer");
pcl::visualization::PCLVisualizer ICPView("ICP Viewer");
double computeCloudResolution(const pcl::PointCloud<PointXYZ>::ConstPtr &cloud)
{
double res = 0.0;
int n_points = 0;
int nres;
std::vector<int> indices(2);
std::vector<float> sqr_distances(2);
pcl::search::KdTree<PointXYZ> tree;
tree.setInputCloud(cloud);
for (size_t i = 0; i < cloud->size(); ++i)
{
if (!pcl_isfinite((*cloud)[i].x))
{
continue;
}
//Considering the second neighbor since the first is the point itself.
nres = tree.nearestKSearch(i, 2, indices, sqr_distances);
if (nres == 2)
{
res += sqrt(sqr_distances[1]);
++n_points;
}
}
if (n_points != 0)
{
res /= n_points;
}
return res;
}
int main(int, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud(new PointCloud<PointXYZ>());
loadPCDFile("cloudASCII000.pcd", *source_cloud);
std::cout << "File 1 points: " << source_cloud->points.size() << std::endl;
//file 1
// Compute model_resolution
double model_resolution = computeCloudResolution(source_cloud);
pcl::ISSKeypoint3D<pcl::PointXYZ, pcl::PointXYZ> iss_detector;
pcl::PointCloud<pcl::PointXYZ>::Ptr source_keypoints(new pcl::PointCloud<pcl::PointXYZ>());
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());
iss_detector.setSearchMethod(tree);
iss_detector.setSalientRadius(10 * model_resolution);
iss_detector.setNonMaxRadius(8 * model_resolution);
iss_detector.setThreshold21(0.2);
iss_detector.setThreshold32(0.2);
iss_detector.setMinNeighbors(10);
iss_detector.setNumberOfThreads(10);
iss_detector.setInputCloud(source_cloud);
iss_detector.compute((*source_keypoints));
pcl::PointIndicesConstPtr keypoints_indices = iss_detector.getKeypointsIndices();
std::cout << "No of ISS points in the result are " << (*source_keypoints).points.size() << std::endl;
std::string Name = "ISSKeypoints1.pcd";
savePCDFileASCII(Name, (*source_keypoints));
// Compute the normals
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normalEstimation;
normalEstimation.setInputCloud(source_cloud);
normalEstimation.setSearchMethod(tree);
pcl::PointCloud<pcl::Normal>::Ptr source_normals(new pcl::PointCloud< pcl::Normal>);
normalEstimation.setRadiusSearch(0.2);
normalEstimation.compute(*source_normals);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr source_features(new pcl::PointCloud<pcl::FPFHSignature33>());
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh;
fpfh.setInputCloud(source_cloud);
fpfh.setInputNormals(source_normals);
fpfh.setIndices(keypoints_indices);
fpfh.setSearchMethod(tree);
fpfh.setRadiusSearch(0.2);
fpfh.compute(*source_features);
/* SHOT optional Descriptor
pcl::PointCloud<pcl::SHOT352>::Ptr source_features(new pcl::PointCloud<pcl::SHOT352>());
pcl::SHOTEstimation< pcl::PointXYZ, pcl::Normal, pcl::SHOT352 > shot;
shot.setSearchMethod(tree); //kdtree
shot.setIndices(keypoints_indices); //keypoints
shot.setInputCloud(source_cloud); //input
shot.setInputNormals(source_normals); //normals
shot.setRadiusSearch(0.2); //support
shot.compute(*source_features); //descriptors
*/
//Target Point Cloud
pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud(new PointCloud<PointXYZ>());
loadPCDFile("cloudASCII003.pcd", *target_cloud);
std::cout << "File 2 points: " << target_cloud->points.size() << std::endl;
// Compute model_resolution
double model_resolution_1 = computeCloudResolution(target_cloud);
pcl::ISSKeypoint3D<pcl::PointXYZ, pcl::PointXYZ> iss_detector_1;
pcl::PointCloud<pcl::PointXYZ>::Ptr target_keypoints(new pcl::PointCloud<pcl::PointXYZ>());
iss_detector_1.setSearchMethod(tree);
iss_detector_1.setSalientRadius(10 * model_resolution_1);
iss_detector_1.setNonMaxRadius(8 * model_resolution_1);
iss_detector_1.setThreshold21(0.2);
iss_detector_1.setThreshold32(0.2);
iss_detector_1.setMinNeighbors(10);
iss_detector_1.setNumberOfThreads(10);
iss_detector_1.setInputCloud(target_cloud);
iss_detector_1.compute((*target_keypoints));
pcl::PointIndicesConstPtr keypoints_indices_1 = iss_detector_1.getKeypointsIndices();
std::cout << "No of ISS points in the result are " << (*target_keypoints).points.size() << std::endl;
savePCDFileASCII("ISSKeypoints2.pcd", (*target_keypoints));
// Compute the normals
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normalEstimation_1;
normalEstimation_1.setInputCloud(target_cloud);
normalEstimation_1.setSearchMethod(tree);
pcl::PointCloud<pcl::Normal>::Ptr target_normals(new pcl::PointCloud< pcl::Normal>);
normalEstimation_1.setRadiusSearch(0.2);
normalEstimation_1.compute(*target_normals);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr target_features(new pcl::PointCloud<pcl::FPFHSignature33>());
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh1;
fpfh1.setInputCloud(target_cloud);
fpfh1.setInputNormals(target_normals);
fpfh1.setIndices(keypoints_indices_1);
fpfh1.setSearchMethod(tree);
fpfh1.setRadiusSearch(0.2);
fpfh1.compute(*target_features);
/* Shot Optional
pcl::PointCloud<pcl::SHOT352>::Ptr target_features(new pcl::PointCloud<pcl::SHOT352>());
pcl::SHOTEstimation< pcl::PointXYZ, pcl::Normal, pcl::SHOT352 > shot_1;
shot_1.setSearchMethod(tree); //kdtree
shot_1.setIndices(keypoints_indices_1); //keypoints
shot_1.setInputCloud(target_cloud); //input
shot_1.setInputNormals(target_normals); //normals
shot_1.setRadiusSearch(0.2); //support
shot_1.compute(*target_features); //descriptors
*/
// estimate correspondences
pcl::registration::CorrespondenceEstimation<pcl::FPFHSignature33, pcl::FPFHSignature33> est;
pcl::CorrespondencesPtr correspondences(new pcl::Correspondences());
est.setInputSource(source_features);
est.setInputTarget(target_features);
est.determineCorrespondences(*correspondences);
// Duplication rejection Duplicate
pcl::CorrespondencesPtr correspondences_result_rej_one_to_one(new pcl::Correspondences());
pcl::registration::CorrespondenceRejectorOneToOne corr_rej_one_to_one;
corr_rej_one_to_one.setInputCorrespondences(correspondences);
corr_rej_one_to_one.getCorrespondences(*correspondences_result_rej_one_to_one);
// Correspondance rejection RANSAC
Eigen::Matrix4f transform = Eigen::Matrix4f::Identity();
pcl::registration::CorrespondenceRejectorSampleConsensus<pcl::PointXYZ> rejector_sac;
pcl::CorrespondencesPtr correspondences_filtered(new pcl::Correspondences());
rejector_sac.setInputSource(source_keypoints);
rejector_sac.setInputTarget(target_keypoints);
rejector_sac.setInlierThreshold(2.5); // distance in m, not the squared distance
rejector_sac.setMaximumIterations(1000000);
rejector_sac.setRefineModel(false);
rejector_sac.setInputCorrespondences(correspondences_result_rej_one_to_one);;
rejector_sac.getCorrespondences(*correspondences_filtered);
correspondences.swap(correspondences_filtered);
std::cout << correspondences->size() << " vs. " << correspondences_filtered->size() << std::endl;
transform = rejector_sac.getBestTransformation(); // Transformation Estimation method 1
// Transformation Estimation method 2
//pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ> transformation_estimation;
//transformation_estimation.estimateRigidTransformation(*source_keypoints, *target_keypoints, *correspondences, transform);
std::cout << "Estimated Transform:" << std::endl << transform << std::endl;
// / refinement transform source using transformation matrix ///////////////////////////////////////////////////////
pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_source(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr final_output(new pcl::PointCloud<pcl::PointXYZ>);
pcl::transformPointCloud(*source_cloud, *transformed_source, transform);
savePCDFileASCII("Transformed.pcd", (*transformed_source));
// viewer.setBackgroundColor (0, 0, 0);
viewer.setBackgroundColor(1, 1, 1);
viewer.resetCamera();
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> handler_source_cloud(transformed_source, 150, 80, 80);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> handler_source_keypoints(source_keypoints, 255, 0, 0);
viewer.addPointCloud<pcl::PointXYZ>(transformed_source, handler_source_cloud, "source_cloud");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "source_cloud");
viewer.addPointCloud<pcl::PointXYZ>(source_keypoints, handler_source_keypoints, "source_keypoints");
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> handler_target_cloud(target_cloud, 80, 150, 80);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> handler_target_keypoints(target_keypoints, 0, 255, 0);
viewer.addPointCloud<pcl::PointXYZ>(target_cloud, handler_target_cloud, "target_cloud");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "target_cloud");
viewer.addPointCloud<pcl::PointXYZ>(target_keypoints, handler_target_keypoints, "target_keypoints");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "target_keypoints");
viewer.addCorrespondences<pcl::PointXYZ>(source_keypoints, target_keypoints, *correspondences, 1, "correspondences");
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
icp.setInputSource(transformed_source);
icp.setInputTarget(target_cloud);
icp.align(*final_output);
std::cout << "has converged:" << icp.hasConverged() << " score: " <<
icp.getFitnessScore() << std::endl;
std::cout << icp.getFinalTransformation() << std::endl;
ICPView.addPointCloud<pcl::PointXYZ>(final_output, handler_source_cloud, "Final_cloud");
ICPView.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "source_keypoints");
while (!viewer.wasStopped())
{
viewer.spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
while (!ICPView.wasStopped())
{
ICPView.spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
/*
// Setup the SHOT features
typedef pcl::SHOT352 ShotFeature;
pcl::SHOTEstimation<pcl::PointXYZ, pcl::Normal, ShotFeature> shotEstimation;
shotEstimation.setInputCloud(model);
shotEstimation.setInputNormals(normals);
shotEstimation.setIndices(keypoint_indices);
// Use the same KdTree from the normal estimation
shotEstimation.setSearchMethod(tree);
pcl::PointCloud<ShotFeature>::Ptr shotFeatures(new pcl::PointCloud<ShotFeature>);
//spinImageEstimation.setRadiusSearch (0.2);
shotEstimation.setKSearch(10);
// Actually compute the spin images
shotEstimation.compute(*shotFeatures);
std::cout << "SHOT output points.size (): " << shotFeatures->points.size() << std::endl;
// Display and retrieve the SHOT descriptor for the first point.
ShotFeature descriptor = shotFeatures->points[0];
std::cout << descriptor << std::endl;
*/
return 0;
}
答案 1 :(得分:0)
这种情况正在发生,因为你的班级我的班级没有身高。它的内容正在流出来
将此添加到您的CSS:
.mine{
background:blue;
*zoom: 1;
}
.mine:before,.mine:after {
content: " ";
display: table;
}
.mine:after {
clear: both;
}
您的网页将会像这样:
.mine{
background:blue;
*zoom: 1;
}
.mine:before,.mine:after {
content: " ";
display: table;
}
.mine:after {
clear: both;
}
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet"/>
<div class="container">
<div class="row">
<div class="col-sm-4">
<h2>Meet Momẽnto.</h2>
</div>
<div class="col-sm-8 my_menu">
<nav class="navbar navbar-default">
<!-- for collapsible button making -->
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#mynavbar">
<!-- for making icon bar -->
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- in order to collapse we will wrap ul in to div tag-->
<div class="mine">
<ul class="nav navbar-nav pull-right">
<li class="active"> <a href="#">Home</a></li>
<li> <a href="#">Slider</a></li>
<li> <a href="#">Portfolio</a></li>
<li> <a href="#">Pages</a></li>
<li> <a href="#">Blog</a></li>
<li> <a href="#">Shortcut</a></li>
</ul>
</div>
</nav>
</div>
</div>
</div>