与ggplot2的彩色直方图

时间:2016-12-12 00:20:57

标签: r ggplot2 statistics histogram aesthetics

我有一个包含值及其相关权重的数据框。我想制作直方图,这样每个条形的高度对应于该条形图中的值的数量,条形图的颜色对应于它们的总重量。我该怎么做?

示例:

D <- data.frame(
    x = c(-0.39, 0.12, 0.94, 1.67, 1.76, 2.44, 3.72, 4.28, 4.92, 5.53, 0.06,
          0.48, 1.01, 1.68, 1.80, 3.25, 4.12, 4.60, 5.28, 6.22),
    w = c(0.1810479, 0.2209460, 0.2974134, 0.3768152, 0.3871925, 0.4682943,
          0.6220371, 0.6838944, 0.7473117, 0.7993555, 0.2159428, 0.2526883,
          0.3046069, 0.3779629, 0.3918383, 0.5667588, 0.6667623, 0.7166747,
          0.7790540, 0.8480375))

ggplot(D, aes(x)) +
    geom_histogram(aes(y=..density..), binwidth=0.5, boundary=0.5)

解决方案

基于eipi10的回答,但使用标准功能:

breaks <- seq(-0.5, 6.5, 0.5)
bins   <- cut(D$x, breaks)

h <- data.frame(
    x      = head(breaks, -1) + 0.25,
    count  = sapply(split(D$x, bins), length),
    weight = sapply(split(D$w, bins), sum))
h$density <- h$count / sum(h$count)

ggplot(h) + geom_bar(aes(x, density, fill=weight), stat='identity')

EM visualization using this method

2 个答案:

答案 0 :(得分:2)

另一种选择是预先汇总数据:

library(dplyr)

D_bins = D %>% 
  mutate(bins = cut(x, seq(-0.5,6.5,0.5), labels=seq(-0.25,6.5,0.5)),
         bins = as.numeric(as.character(bins()))) %>%
  group_by(bins) %>%
  summarise(count_x = n(),
            sum_w = sum(w))

ggplot(D_bins) +
  geom_bar(aes(bins, count_x, fill=sum_w), colour="white", stat="identity") 

enter image description here

你也可以使用两组相对的条形,而不是填充美学:

ggplot(D_bins) +
  geom_bar(aes(bins, count_x), colour="white", fill="blue", stat="identity") +
  geom_bar(aes(bins, -sum_w), colour="white", fill="red", stat="identity") +
  scale_x_continuous(breaks=-1:10) +
  scale_y_continuous(limits=c(-2,4), breaks=seq(-2,5,1), labels=c(2,1,0:5)) +
  labs(y = c("Sum of w                       Count of x            ")) +
  coord_flip()

enter image description here

答案 1 :(得分:0)

ggplot(D, aes(x)) + geom_histogram(aes(y=..density.., fill=..count..), binwidth=0.5, boundary=0.5)
  • 通过“栏的颜色(实际上:填充)对应于它们的总重量。”,你的意思是“总和”。与..sum..不同,没有内置..count..。也许你需要将数据预处理成垃圾箱。