我在使用NumPy
和/或Pandas
处理2D
列表时遇到困难:
获取所有元素的唯一组合的sum
,而无需再次从同一行中选择(下面的数组应该是81种组合)。
打印组合中每个元素的行和列。
例如:
arr = [[1, 2, 4], [10, 3, 8], [16, 12, 13], [14, 4, 20]]
(1,3,12,20), Sum = 36 and (row, col) = [(0,0),(1,1),(2,1),(3,2)]
(4,10,16,20), Sum = 50 and (row, col) =[(0,2),(1,0),(2,0),(3,2)]
答案 0 :(得分:5)
通过创建所有此类组合和求和来实现:以下是使用itertools.product
和 <?php
$conn = new PDO('mysql:host=localhost;dbname=android',$uname,$pwd);
// Check connection
$id=$_POST["id"];
$name=$_POST["name"];
$statement = $conn->prepare("INSERT INTO sample(id, name)
VALUES(:id, :name)");
$statement->execute(array(
"id" => $id,
"name" => $name
));
?>
的矢量化方法 -
array-indexing
示例运行 -
from itertools import product
a = np.asarray(arr) # Convert to array for ease of use and indexing
m,n = a.shape
combs = np.array(list(product(range(n), repeat=m)))
out = a[np.arange(m)[:,None],combs.T].sum(0)
符合记忆效率的方法:这是一种不创建所有这些组合的方法,而是使用即时broadcasted
总结,而哲学的灵感来自于this other post
-
In [296]: arr = [[1, 2, 4], [10, 3, 8], [16, 12, 13], [14, 4, 20]]
In [297]: a = np.asarray(arr)
...: m,n = a.shape
...: combs = np.array(list(product(range(n), repeat=m)))
...: out = a[np.arange(m)[:,None],combs.T].sum(0)
...:
In [298]: out
Out[298]:
array([41, 31, 47, 37, 27, 43, 38, 28, 44, 34, 24, 40, 30, 20, 36, 31, 21,
37, 39, 29, 45, 35, 25, 41, 36, 26, 42, 42, 32, 48, 38, 28, 44, 39,
29, 45, 35, 25, 41, 31, 21, 37, 32, 22, 38, 40, 30, 46, 36, 26, 42,
37, 27, 43, 44, 34, 50, 40, 30, 46, 41, 31, 47, 37, 27, 43, 33, 23,
39, 34, 24, 40, 42, 32, 48, 38, 28, 44, 39, 29, 45])
答案 1 :(得分:1)
您可以使用product
中的itertools
功能:
from itertools import product
y = [sum(p) for p in product(*arr)]
len(y)
# 81
列表较小的示例:
arr = [[1,2],[3,4],[5,6]]
[sum(p) for p in product(*arr)]
# [9, 10, 10, 11, 10, 11, 11, 12]