这里有一个新手刮刀!
我目前沉迷于繁琐无聊的任务,我必须从天使列表中复制/粘贴某些内容并将其保存在excel中。我之前使用过刮刀来自动执行这些无聊的任务,但是这个很难,我无法找到自动化的方法。请在下面的网站链接中找到:
https://angel.co/people/all
请使用过滤器位置 - >美国和市场 - >在线约会。将有大约550个结果(请注意,当您应用过滤器时,URL不会发生变化)
应用过滤器后,我已成功删除了所有配置文件的网址。因此,我有一个包含这些配置文件的550个URL的excel文件。
现在,下一步是转到个人资料并废弃某些信息。我目前正在寻找这些领域:
现在我已经尝试了很多解决方案但到目前为止还没有解决过。 Import.io,数据挖掘器,数据抓取工具对我没什么帮助。
请建议是否有任何VBA代码或Python代码或任何可以帮助我自动执行此抓取任务的工具?
完整的解决方案代码:
以下是带注释的最终代码。如果有人仍有问题,请在下方发表评论,我会尽力帮助您。
from bs4 import BeautifulSoup
import urllib2
import json
import csv
def fetch_page(url):
opener = urllib2.build_opener()
# changing the user agent as the default one is banned
opener.addheaders = [('User-Agent', 'Mozilla/43.0.1')]
return opener.open(url).read()
#Create a CSV File.
f = open('angle_profiles.csv', 'w')
# Row Headers
f.write("URL" + "," + "Name" + "," + "Founder" + "," + "Advisor" + "," + "Employee" + "," + "Board Member" + ","
+ "Customer" + "," + "Locations" + "," + "Markets" + "," + "Investments" + "," + "What_iam_looking_for" + "\n")
# URLs to iterate over has been saved in file: 'profiles_links.csv' . I will extract the URLs individually...
index = 1;
with open("profiles_links.csv") as f2:
for row in map(str.strip,f2):
url = format(row)
print "@ Index: ", index
index += 1;
# Check if URL has 404 error. if yes, skip and continue with the rest of URLs.
try:
html = fetch_page(url)
page = urllib2.urlopen(url)
except Exception, e:
print "Error 404 @: " , url
continue
bs = BeautifulSoup(html, "html.parser")
#Extract info from page with these tags..
name = bs.select(".profile-text h1")[0].get_text().strip()
#description = bs.select('div[data-field="bio"]')[0]['data-value']
founder = map(lambda link: link.get_text().strip(), bs.select('.role_founder a'))
advisor = map(lambda link: link.get_text().strip(), bs.select('.role_advisor a'))
employee = map(lambda link: link.get_text().strip(), bs.select('.role_employee a'))
board_member = map(lambda link: link.get_text().strip(), bs.select('.role_board_member a'))
customer = map(lambda link: link.get_text().strip(), bs.select('.role_customer a'))
class_wrapper = bs.body.find('div', attrs={'data-field' : 'tags_interested_locations'})
count = 1
locations = {}
if class_wrapper is not None:
for span in class_wrapper.find_all('span'):
locations[count] = span.text
count +=1
class_wrapper = bs.body.find('div', attrs={'data-field' : 'tags_interested_markets'})
count = 1
markets = {}
if class_wrapper is not None:
for span in class_wrapper.find_all('span'):
markets[count] = span.text
count +=1
what_iam_looking_for = ' '.join(map(lambda p: p.get_text().strip(), bs.select('div.criteria p')))
user_id = bs.select('.profiles-show .profiles-show')[0]['data-user_id']
# investments are loaded using separate request and response is in JSON format
json_data = fetch_page("https://angel.co/startup_roles/investments?user_id=%s" % user_id)
investment_records = json.loads(json_data)
investments = map(lambda x: x['company']['company_name'], investment_records)
# Make sure that every variable is in string
name2 = str(name); founder2 = str(founder); advisor2 = str (advisor); employee2 = str(employee)
board_member2 = str(board_member); customer2 = str(customer); locations2 = str(locations); markets2 = str (markets);
what_iam_looking_for2 = str(what_iam_looking_for); investments2 = str(investments);
# Replace any , found with - so that csv doesn't confuse it as col separator...
name = name2.replace(",", " -")
founder = founder2.replace(",", " -")
advisor = advisor2.replace(",", " -")
employee = employee2.replace(",", " -")
board_member = board_member2.replace(",", " -")
customer = customer2.replace(",", " -")
locations = locations2.replace(",", " -")
markets = markets2.replace(",", " -")
what_iam_looking_for = what_iam_looking_for2.replace(","," -")
investments = investments2.replace(","," -")
# Replace u' with nothing
name = name.replace("u'", "")
founder = founder.replace("u'", "")
advisor = advisor.replace("u'", "")
employee = employee.replace("u'", "")
board_member = board_member.replace("u'", "")
customer = customer.replace("u'", "")
locations = locations.replace("u'", "")
markets = markets.replace("u'", "")
what_iam_looking_for = what_iam_looking_for.replace("u'", "")
investments = investments.replace("u'", "")
# Write the information back to the file... Note \n is used to jump one row ahead...
f.write(url + "," + name + "," + founder + "," + advisor + "," + employee + "," + board_member + ","
+ customer + "," + locations + "," + markets + "," + investments + "," + what_iam_looking_for + "\n")
可以使用以下任意链接测试上述代码:
https://angel.co/idg-ventures?utm_source=people
https://angel.co/douglas-feirstein?utm_source=people
https://angel.co/andrew-heckler?utm_source=people
https://angel.co/mvklein?utm_source=people
https://angel.co/rajs1?utm_source=people
快乐编码:)
答案 0 :(得分:2)
对于我的食谱,您需要使用pip或easy_install
安装BeautifulSoupfrom bs4 import BeautifulSoup
import urllib2
import json
def fetch_page(url):
opener = urllib2.build_opener()
# changing the user agent as the default one is banned
opener.addheaders = [('User-Agent', 'Mozilla/5.0')]
return opener.open(url).read()
html = fetch_page("https://angel.co/davidtisch")
# or load from local file
#html = open('page.html', 'r').read()
bs = BeautifulSoup(html, "html.parser")
name = bs.select(".profile-text h1")[0].get_text().strip()
description = bs.select('div[data-field="bio"]')[0]['data-value']
founder = map(lambda link: link.get_text().strip(), bs.select('.role_founder a'))
advisor = map(lambda link: link.get_text().strip(), bs.select('.role_advisor a'))
locations = map(lambda link: link.get_text().strip(), bs.select('div[data-field="tags_interested_locations"] a'))
markets = map(lambda link: link.get_text().strip(), bs.select('div[data-field="tags_interested_markets"] a'))
what_iam_looking_for = ' '.join(map(lambda p: p.get_text().strip(), bs.select('div.criteria p')))
user_id = bs.select('.profiles-show .profiles-show')[0]['data-user_id']
# investments are loaded using separate request and response is in JSON format
json_data = fetch_page("https://angel.co/startup_roles/investments?user_id=%s" % user_id)
investment_records = json.loads(json_data)
investments = map(lambda x: x['company']['company_name'], investment_records)
答案 1 :(得分:0)
它允许非常快速地编写解析器。这是我的一个网站的示例解析器,类似于angel.co:https://gist.github.com/lisitsky/c4aac52edcb7abfd5975be067face1bb
很遗憾,我现在无法使用angel.co。好点开始:
$ pip install scrapy
$ cat > myspider.py <<EOF
import scrapy
class BlogSpider(scrapy.Spider):
name = 'blogspider'
start_urls = ['https://angel.co']
def parse(self, response):
# here's selector to extract interesting elements
for title in response.css('h2.entry-title'):
# write down here values you'd like to extract from the element
yield {'title': title.css('a ::text').extract_first()}
# how to find next page
next_page = response.css('div.prev-post > a ::attr(href)').extract_first()
if next_page:
yield scrapy.Request(response.urljoin(next_page), callback=self.parse)
EOF
$ scrapy runspider myspider.py
输入有趣的css选择器并运行spider。